R 28

——
—

) X
e

Arduino pour bien
commencer en
électronique et en
programmation

P i Site ou
LJ éro
ero.com

www.siteduz

http://www.siteduzero.com

Licence Creative Commons 6 2.0
Derniere mise a jour le 2/12/2012

2/326

Sommaire

SO .. e e e
LIl AU S et

2

4

Arduino pour bien commencer en électronique et en programmationcccoeeeiiiiiiei e 6
(g E= T o [V oo 1V | =SSP UPPRR 6
APPIENTISSAGE AES DASES ...uieeiiiiiii ettt ettt oottt e oottt e e ettt e e e tteaeaaseeeabeeeeaate e e e beee e s beeeaase e e oo s bee e aas s e e e ks e e e eaE e e e e RE e e e eAbe e e enAeeeenneeeenbeeeenteeeennneeeanneeean 6
Notions en robotique et en domotique . .7

Les écrans LCDccccvveeveeeicciieeeenn. 7
7

7

7

7

8

9

9

9

9

Interface Homme-Machine ..
Internetccovviiiiiii .
Les annexes e eeeeeeeeeEeeeeeeeeeaasatteeeeeeaanteeeeeeeaanteteeeeeeaanhaneeeeeaaannntaeeeeeaanntaeeeeeeaanns

L0 o] [T ot 1) e LU I oo 10| = T PRSPPI

Partie 1 : [Théorie] Découverte de I'"ArdUINOcoooiiiiieeee e e e

Présentation ...,
Présentation d'Arduino et eeeeeeee—e—teeeeaeaa——eeeeeaan———raeeeeaaanrreaaeaaans
Qu'estcequec'est?cccoevcivenieeeenns .
Les bonnNes raiSONS A€ COISIF ATTUINOciiiiiiiiiiee e e ettt ee e e ettt e e e e eea e eeeeeeaaataeeeaeaassasteeaeeaeaassaeaeaeesassssaeeeeee s ssbeseaeeesanssseeeeeesaansnsaeeeeseansnssnneeeeannns
Les outils Arduinococcoeveeivieneeennn.
Acheter une carte ...
Listes d'achat ...
Liste Globale ! ..

Les revendeurs 21
[T L1 OO OPPTPPPRPPI 21
QUEIGUES DASES BIEMENTAINESoiiiiiiiie ittt et e e st e e et ee e e e st e e e e s baee e e nbeeae e ssaeaeaansaeaeeansaeaeennseeaeennnes 22
L'électronique
[oo 0= o =1 1= o1 5 T [SRR 22
LT 7o o PSPPSR
La masse
La résistance
Un outil formidable : 12 BrEeaaBOardoooeeiiiiiiiiiiie ettt h ettt h ettt et e e e bt et ees st e b e e ohe e ea bt e ehe e e e bt e bt e ea bt e b e e e h bt e b e e ehe e e bt e naeeereea 26
[o] ol =T 410 0 =1 (1] o TSP PRPP
Qu'est-ce qu'un programme
La programmation en électronique
[oF= EY T o (U oo Ty g o] = o TN 020 0 Ry LG O TSP OPR PP 30
[T 0T YT o (U o (=X oo g] =T [TR 30
Conversions
=T o Yo | T3 = P PPPPRPPRPPNE
(g 153 e=1 1= 1o o E SO OP PP P PP SOPPTUPPN
Téléchargement
Interface du logiciel
LANCEMENT AU IOGICIEIeeeeeieee ettt ettt h et oot e h et eat e et e e e as e et e e ket ea b e e eh et eas e e ehe e eat e e et e eas e et e e ebe e e bt e naeeenneenaeenaneennen
e (T ol e= i o] g o [N (oo o =1 TP PPPRP
Approche et utilisation du logiciel ..
Le menu Filecoooieiiiiiii,
[T oY1 (o] F- SO RSO
=N 0 0= (=3 =
Présentation de la carte ...
(O] E1 100y (o g e Lo =T o= 1y (= TP PPR
10151 e=1 1= 1o o H TSP PRSP PUOPPP PPN
Sous Windows
L G T T Ty = G =Y TSP PP OPRRPPO
I P TaTo =T [N N o [oo I (2 P PPPRR
La syntaxe du langage
Le code minimal
Les variables
Les opérations "simples"
Quelques opérations bien pratiques 57
L'opération de bascule (ou "inversion d'état") ... 59
Les conditionsccocceveeiieeiiiiee e ... 59
If...€IS€ wuveeveiciiiiee, ... 60
Les opérateurs logiques 62
SWItCh oo, . 64
La condition ternaire ou condensée 66
Le langage Arduino (2/2) 67
Les bouclesccceeeeeeiiienenns ... 68
La boucle while 68
La boucle do...while 69
La boucle for e 71
La boucle infinie .72
Les fonctions72
Fabriquer une fonction 73
Les fonctions vides e 74
Les fonctions "typées" 75
Les fonctions avec parameétres 76
[T =1 o] =Y 1F TP UURRRPPROt 78

www.siteduzero.com

http://www.siteduzero.com

Sommaire 3/326

[= Ted = Ty T R = o[- T USRS SPRt 79
Accéder et MOdifier UNE CASE AU TADIEAUoiiii e et e e ettt e e e e et eeeeeeeeabseaeeeeeeaassseeeeeaaasssseeeeeeesaastaeeeeeessnsssnneaeesansrens 79
Initialiser un tableaucccccooeviiieenennn.
Exemple de traitement

Partie 2 : [Pratique] Gestion des entrées / SOItiESuuuuiieiiiiiiii e 83

[N o) (=R o]y =T o T[Tl o] fe o | =T o] o 1= SRR 84

La diode électroluminescente
DEL/LED ? oo
Lo o3 110 T 0 1= 0 0 =Y o1 SRR
LT o (8 loT I o] g ool a0 4 =10 o= SRRSO RPPURPRE 87
Réalisation

Introduire le temps

(7070310 1T 01 8 7= 11 PR P PRSPPI 96
Faire clignoter un groupe de LED .
Réaliser un chenillard
Lo Vo (0T 0 T 0 1111 OSSPSR
[T oYl e [N = foT g Ter o Ta e LY - 1Y O UOPR U RRPP
Découvrons et utilisons millis()
[TP] Feux de signalisation routiére
L (=T 0= 1= 11T) o PSPPSR
Enoncé de I'exercice ..
Correction !
[oo]y (= Tor (0] o =T o o 1N A RO P ORI 114
LTI T o [o o U1 o] o TSSO 117
L@ LU =S oI 13 0TI o T 11 (o o TSP RS 117
1Y (= oz=Ta o [U TSN e [T o T T o o PR 117
[[Tor 1 4o) o [B Lo (U oo T 1 (o o RSP SRUPTRY 117
Contrainte pour les montages . .. 118
Les pull-ups internes 120
Récupérer I'appui du bouton ... e 121
o g1 e=Te [o Lol o o L= R TS TS OO P RSO PR OTPR RO 121
LT 1411 =T o F= W o= T (=TT U P UP P PUPPTP 122
LR TeIB o1 LY =Y e= o L1 N o0 11 o] o OSSPSR 123
Test simplecccccvveeeeene . 123
Interagir avec les LEDs . . 125
Montage a faireccc... 125
Objectif : Barregraphe a LED .. . 127
(70141 =Te1 o] o HU SRRV RUPPRN 127
Les interruptions matérielles 132
Principe ...ccoovvieeiiieiee e ... 132
Mise en place 133
LY LY==t e F= o L= TSP P PP PPRP PPN 133
F N o] a1 U AT To 4 =Y o (TSR .. 135
Matériel ... e 135
Premiére approche : coté électronique 135
Un peu (beaucoup) d'électronique 135
Branchement "complet" de I'afficheur .. 136
Afficher son premier chiffre ! 139
S Toda 1= 100 b= o Lol ot g 1= (o PSR R PRSPPI 139
(IR o] ol =1 410 o LY PRSP 140
TEChNIQUES A'AfICRAGEttt a et e h ekt ek e e a bt oAbt e eh bt o2 bt e ohe e e et e e e et e e bt e bt e eh bt e bt e e he e e bt e nhe e eateenneeeneenteeaa 141
LeS dECOARUIS "4 DiItS => 7 SEGIMENTS" ...ttt ettt ettt e ettt e e bt e e e s tee e s aaeeeaseeeeaas e e e e ae e e e ambeeeeaee e e nbeeeeaneee e amaeeeeasbeeeambeeeenbeeeeanbeeeanneaeanneaaann 141
L'affichage par alternance 144
Utilisation du décodeur BCD 144
Utiliser plusieurs afficheurs 149
Un peu d'électronique... 149
...et de programmation 155
Contraintes des événements 167
L e 174 = T 1T USRI 160
(701451 T | L= OO PR OP PO UPTRPOURRPRN
Correction !
Montage
e (o7 |- 1 410 1= TP PU PP PTPPOPPPIRE
{070 e 1] o) o XSRS S TR
Ajouter des sorties (numériques) a I'Arduino
Présentation dU 7AHCS595 ...ttt e e a et e b e e b et e st e e ohe e e e et et eoa bt e b £ e E st oAb e e b et A e £ e eh e e oA R e e b e eh et R e e b et e bt e e he e e bt e nhe et enee s
[41 Ted o1 TSRS
Le composantccceeveiiiiiiine i
Programmons pour utiliser ce composant ..
ENVOYEr UN Ordre @U 74HGCTSEOS ...tttk et e bt a et e bt oa et £t e e oh et ea bt e bt e oAb e e b e e 4a b e e b et ea et ea bt e eh et e bt e ehe e en b e e eb et eae e e be et ete s
(I (o g e 1o g W aaF= o[To U LIRS 011 (@ 11 PP PPPR
Exercices : encore des chenillards ! .
"J'avance etrepars !"cocooeerien.
B (V=T Lot L oYY o o PSPPSRSO 184
{8l [Ty g =T o To ULl F= N o101 (< 3 TP P TR 185
Exo bonusccoeiiiiiiiiiiine ... 186
Pas @SSEZ 7 AUGIMENTET ©NCOIE | ... ittt ettt ettt ettt e ettt e e e aaeee ek beeeeassee e aeeeeaateeeeameeeaambe e e e s e e e e eamee e e s bee e aaseee e amneeeembeeeeanseeeaneeeaanseaasn 188

www.siteduzero.com

http://www.siteduzero.com

Sommaire 4/326

Partie 3 : [Pratique] Communication par [a liaiSon SErieceeiiiiiiiiiiiicicee e 193
L= =T] (=SSP 193

[l go1 (e oto] (=N e [=NoToTa T4 o TU T a1 To%=1 i o] o NP S 193
PrINCIPE dE 18 VIOIE SEIIE ...ttt ettt ettt ettt ettt e ettt e oo at et e e ateeeeaae e e e aabe e e e nbee e aane e e et st e e eas e e e e aeeeeambeeeeanee e e nbeeeeanseeeamneeeanbseaeanseeeanneeeannnen 193
F Y= 1Y e L= oo 40 0 T=Y o7 =T USSR 193
Fonctionnement de la communication série

Fonctionnement de la liaison série

Le connecteur série (ou sortie DB9)
[o ToES (o] g o Lo T =Ty (=T = PO T R OO PP PP PTRPPPI
(D<o LT oIS U o Lo o1 o YRR PT S RRR
Mode de fonctionnement
Arduino et la communication
Utiliser 1a liaiSON SEIE @VEC ATTQUINOccieiieeiiieeieiee ettt e et e ettt e e et e e s eateeesaseeeaasaeeesaseeeesseeeeasteeessseeeasseeesasteeeasseeeaasaeeeanseeeansseeaanseeesnnneenansanennnnnennnn
Différence entre Ordinateur et Arduino
Les niveaux électriquesccccccueenn.
Cas d'utilisationcccccoevveevieiiiiinnn.

Envoyer/Recevoir des données
Préparer la liaison sérieccceveeee
Du cété de l'ordinateur
D oTo) (Yo [Vl o] (oo =11 4104 TN OSSOSO P P TR TSRO PR PPRRRURTOPRNY
=L 0N o) =T e [T o [o gL g T= T SO TP TP UPPPPTIN
Appréhender l'objet Serial ...
La fonction print() en détail
EXErcice : ENVOYET I'AIPNADETooiiiiiiiii ettt et h et a e e bt eae et e eea et et e ekt eea bt e bt e e he e e bt e nae e et e e nen e ereenteenane
RECEVOIN AES HONMNEES ... ettt b e s e e bt e s b e e e b e e e b e e e as e she e s ae e e b e s ab e e bt e s hb e e b e e s b e e e sbe e saeesaneesbessaneenteeeans
Réception de données
Exemple de code complet
[EXErCiCe] AHENTION @ 18 CASSE |eiiiiiieiei ettt a e e b e he et e e a et ot e e he e et e e b oo e st e b e e e ae e e bt e nae e et e e nan e et e e nbe e e b e e nneeeenean 216
(70701511 o L= PR URURUURRPR
Correctionccoeeeveveceeennnn.

[TP] Baignade interdite
S TU 1] Qe [V R I SRR UURUPO
Contexte
Objectif ...
CONSEIL ...ttt b ettt et s he e e et e b e e e et e e E e oo h bt e b e e oM £ e e b e e eh e e e et ook e e e b e e E e e oAb e e h e e eh et e b e e nae e et e e ehe e e et e ehb e e b e e e b e e st e e naeenaeeeees
LTSV = | PSSO PP
Correction !ccoeeveeene

Le schéma électroniquecccceeevvveeennen.
Les variables globales €t 12 FONCHON SELUDP()eeiiuriieiiiie ittt ettt e s bt e e ettt e e eaat e e e eb e e e aas e e e e beeeeambeeeeneeeenbeeesaneeeeanseeeanbneaeanseaaannes 224
La fONCHON PrINCIPAIE B 185 QULIESiiiiiii et e e ettt e e sttt e e ae e e e e ateeesseeeeasteeeaaseeeeasseeeaasaeaesaseeeasseae e sseeeansaeeesseaennsseeensnnnennes 225
Code complet
Améliorations
[Annexe] Votre ordinateur et sa liaison série dans un autre langage de programmationcccccveeveeeeeiicciineeeeeeeenn. 233
= IO = (Y=Y o | USSR URRRRRRPNE 234
Installer QextSerialPort 234
Les trucs utiles 235
Emettre et recevoir des données .. . 239
En C# ((Net) .o, 240
Les trucs utilesccocceeeveeeennnen. ... 240
Emettre et recevoir des donNEEesceeveveevceeueeeeeeeeerreeeennn, PO P O PPPROPPPPOt e ... 243
Partie 4 : [Pratique] Les grandeurs analogiQUEScooeuuuiiiiiiiiiiiieeeiiie e 246
Les entrées analogiqUes Ae 'ArTUINOoii ittt e et e s et e e s et e e e anb e e e e e aeeas 246
Un signal analogique : petits rappels .
Les convertisseurs analogiques -> NUMETIGUE OU CAN ...ttt ettt e et e bt e e te e e bt e sbeeaa b e e aheeaabeaabeeeabeeaseeasseenbeesaeeenbeenneesnbeaneean
ArduiNO dISPOSE A'UN CAN ... ittt ettt e bt e ettt e bt e eh et ea st e eh et ea et et e e sae e et e e b et ee bt e b e 4o ee e e st e na et et e e sae e eab e ekt e ea bt e en e e ehne e neenanennee e
Le CAN a approximations successives ...
Lecture analogique, on y vient...
Lire la tension sSur une BroChe @N@IOGIGUEcoiiiiiiiiiii ettt e h et e et et e e eat et e ea b e e e e ab e e e o be e e e s bt e e sabbe e e asbeeeeabbeeesaseeeennnee s
(070 0 1V7=T a1l o= TV U = S
Une meilleure précision ?ccccoeeeviieeeiiee e
Solution 1 : modifier la plage d'entrée du CONVEISSEUFc.ccoiiiiiiiiiiiiee e
Solution 2 : présentation théorique d'une solution matérielle (nécessite des composants supplémentaires)cccccevveeieeriiiiienie s 258
EXEMPIE Q'UEIIISATION ...ttt bttt a ettt eh et et e e ettt oo b e e b e e e et e e bt e ea et oot e e eh et et e e bt e e e bt e b e e e ae e e b et nan e et e e an e re e e s
Le potentiométre

Utilisation avec Arduino

[TP] Vu-métre a LED

Consigneccoeceeenieennns
Correction !
Schéma électronique
L8 COTE ..ttt h et h et b e h e e b oo b e e b e e eh e e e a et e h e e Sae e et e e ea e e e R e e b et oAb e e h e e e Rt e e ehe e eae e et e e eab e e bt e e he e e bt e sbe e e e e nanenteeneas 266
AMELIOrationccoeeiiiiieiici e ... 267
Et les sorties "analogiques”, enfin... PrESQUE |uuiiiiiiiiii e e e e e et e e e e e e e seabrre e e e e e e e e aans o 271
Convertir des données binaires en signal analogique ... e 271
Convertisseur Numérique->Analogiquec.cccecueenee. o 271
PVVIM OU ML <.ttt e et e bt e h 4Rt e e e e E e e et et €S h e e e e 4R e ek e e e £ ee £ e e e A H e e e e e D e ek e e e e e bt e ae e e et ehe e b e bt e st eb e e aeeneeebeeneebeennenne e 271
[I VA V0 = B o[o USSP 273
AVaNnt de COMMENCET @ PrOGIAIMIMIETutiiiuette ettt eateeaaaueeeaateeeaasseeeaaseeeaasseeeaasseeasseeeaateeeeams e e e aase e e eaab e e e aane e e 2as s e e e oat s e e e be e e e ambeeeeaneeeeanbeeesanbeeeannneenanneas 273
Quelques outils essentiels 274
A VOS ClaVIers, Pré&t... PIOGIAMMEZ |c.vovueueueeeeeeeeeeeeeee et eeesesesaeasteeesesesesestetee et ee s sseseees s et s enssasaet et eeesenssasestee st esenanseeesessseeansnensesssesasansnanensntneasenans 278
Transformation PWM -> signal analogique 281
La valeur MOYENNE A'UN SIGNQAIeiiiiiieeiii ettt ettt et e e e ab et e et b et e sat et e e b e et e eab e e a4 aae e e e a b e e e £as b e e e R b e e e 2a ke e e e oab et e e abe e e e nbeeeenneeeeanbeeennneeean 282

www.siteduzero.com

http://www.siteduzero.com

Lire aussi 5/326

EXtraire CtE VAIBUI MOYENNEo.uiiiiiiiii ettt h e et e bt eh et e bt e oa et e bt eeh bt e b e e b et ea bt e eh e e e R et e bt e eae e et e e ehe e et e e be e e b e e aneesnnes 283
Calibrer correctement la constante RC 287
[Exercice] Une animation "YoUTUDE"o ettt e e e e e e e e e e e e e e s e e e e e e e e e e e nnneees ... 288
BIMONCE ettt ettt oo et e e e ettt et et et et e e et et e et et et et et e et e e ae ettt et et et et e e et eue e et et et et et et et et e ee et et ee et ee et e et e ettt e et et ee et e e e e e en et ee et e 289
Solution 289
Le schéma 289
I oo T [PSPPSR 291
Partie 5 : [Pratique] L'affiChagecooo oo 294
(T Yo = 1o 3 I O I
Un écran LCD c'est quoi ? ..
Commande du LCD
(@ 10T I =Tor = o el o Lo 1| 297
[T o= = Tor (= (] (T U1 PRSP 297
Communication avec I'écran .. 298
Commentons'ensert?......... ... 299
Le branchementcccovveeiiiiinnnen.. ... 299
Le démarrage de I'ECTaN @VEC ATAUINOii ittt ettt e aa et e ettt eoa b et e e bt e e £ eabe e a4 a et e e a s e e e £as e e e e s be e e eabs e e e amb e e e e abe e e e nbeeeemeeeeanbeeenanneeean 301
Vo1 g o= g 1= g L= (= Y POt 303
Ecrire du texte
N o] 1= e U IR (= (=SSOSO 304
AFFICNEN UNE VAADIE ...t e ettt e e e e ettt ee e e eeaaaeeeeeeeeaaaaseeeaeeaasasseeeeeeesaastaeeeeee s ansseeeeeeesnsbeseeeeesanssssseaeesaansnsseeaeeaaannnes 304
Combo ! Afficher du texte ET une variable 305
Exercice, faire une horlogeccccoceiienn. 306
Se déplacer sur I'écran 308
(1= =T = 1iTe] = To = SRR RRROTRPOY 308
(7= =T [N o1 U USSR 309
Jouer avec le texte 310
(O =TT U I w=T =Tt =Y - SR 312
L RS 101 o T=T 3 (o] o PRSPPI 314
(7073111 o L= RSO UPURURUURUPR 315
Correction ! 316
Le montage 316
[N oo Lo [N ROP PR 318

www.siteduzero.com

http://www.siteduzero.com

Lire aussi 6/326

Arduino pour bien commencer en électronique et en

programmation

Eskimon et Astalaseven

CHODE THEoAL

Mise a jour: 02/12/2012

Difficulté : Intermédiaire wss Durée d'étude : 2 mois
(G ev-ro—cn |

13 646 visites depuis 7 jours, classé 1/25

Bienvenue a toutes et a tous pour un tutoriel sur I'électronique et l'informatique ensemble ! @

Depuis que I’¢lectronique existe, sa croissance est fulgurante et continue encore aujourd’hui. Si bien que faire de I’¢électronique
est devenu accessible a toutes personnes en ayant ’envie. Mais, le manque de cours simples sur le net ou en libraire empéche la
satisfaction des futurs électroniciens amateurs ou professionnels et parfois empéche certains génies a se révéler (@). C’est

pourquoi je souhaite intervenir contre cette insuffisance et écris ce cours sur 1’électronique et la programmation.

Ce que nous allons apprendre aujourd'hui est un mélange d'électronique et de programmation. On va en effet parler
d'électronique embarquée qui est un sous-domaine de I'électronique et qui a I'habileté d'unir la puissance de la programmation a
la puissance de I'électronique.

Nous allons, dans un premier temps, voir ce qu'est I'électronique et la programmation. Puis nous enchainerons sur la prise en
main du systéme Arduino. Enfin, je vous ferais un cours trés rapide sur le langage Arduino, mais il aura 'audace de poser les
bases de la programmation. C'est une fois que ces étapes seront achevées que nous pourrons entamer notre premier programme
et faire un pas dans I'¢électronique embarquée.

Avant de continuer, il est important que je vous informe d'une chose : dans ce cours, il est question d'utilisation de
matériel. Ce matériel n'est pas fourni par le site du zéro, ni méme par les auteurs. En outre, il faudra l'acheter. J'explique

ﬁ cette étape dans un des chapitres. Pour ceux qui ne voudraient pas dépenser un centime, vous pouvez suivre le cours
et apprendre les bases de la programmation, mais ce sera plus difficile. Et puis, dites vous bien qu'il nous a fallu nous
aussiacheter le matériel pour pouvoir tout vous expliquer en détail.

Je vais détailler un peu le plan du cours. Il est composé d'un certain nombre de parties qui ne se suivent pas forcément. Je
mexplique.

Apprentissage des bases
Le cours est composé de fagon a ce que les bases essentielles soient regroupées dans les premiéres parties. C'est a dire, pour
commencer la lecture, vous devrez lire les parties 1 et 2. Ensuite, les parties 3 et 4 sont également essentielles et sont a lire dans

l'ordre.

Apres cela, vous aurez acquis toutes les bases nécessaires pour poursuivre la lecture sereinement. C'est seulement aprés cela
que vous pourrez suivre le cours selon les connaissances que vous aimeriez acquérir.

www.siteduzero.com

http://sciences.siteduzero.com/membres-294-198273.html
http://sciences.siteduzero.com/membres-294-179280.html
http://sciences.siteduzero.com/membres-294-317048.html
http://sciences.siteduzero.com/tutoriel-21-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
http://sciences.siteduzero.com/tutoriels-les-plus-visites
http://www.siteduzero.com

Arduino pour bien commencer en électronique et en programmation 7/326

Notions en robotique et en domotique

La, ce sont les parties 5 et 6. Elles traitent de notions utilisées en robotique et en domotique. Elles vous permettrons d'acquérir
des bases dans ces domaines. Si la lecture de ces parties ne vous emballe pas, vous pourrez toujours y revenir plus tard et
accéder aux parties suivantes, sans pour autant perdre le fil de la lecture.

Les écrans LCD

Cette partie traite d'un sujet a part, a la fois utilisé en robotique et en domotique, mais tout aussi utilise dans d'autres domaines,
tel que la mesure et l'affichage de données. On pourrait trés bien imaginer l'utilisation d'écrans LCD pour déboguer vos
programmes.

Interface Homme-Machine

Cest le sujet de la partie 8 qui développe le fonctionnement d'un langage de programmation trés proche d'Arduino et qui vous
permettra de réaliser des interfaces graphiques (IG) sur votre ordinateur, dans le but de communiquer avec votre carte Arduino.
En somme, vous pourrez créer des programmes (j'entends par la des IG) pour contrdler, depuis votre ordinateur, votre carte
Arduino. Par exemple, vous pourrez ensuite réaliser une commande domotique qui éteint la lumicre de votre salon ou allume la
machine a café, juste en cliquant sur un bouton présent dans votre IG.

Ce n'est pas tout ! En effet, en plus de pouvoir faire des IG sur votre ordinateur, vous pourrez également les exporter pour les
transférer sur un téléphone mobile qui supporte les applications Java !

Internet
Cette derniére grande partie vous expliquera comment utiliser votre Arduino, avec un shield Ethernet, pour communiquer sur
internet et créer votre propre mini-serveur web. Vous aurez méme la possibilité de découvrir comment actionner des entrés/sorties
a distance par l'interface d'une simple page Web !

Les annexes

Pour finir, les annexes traiterons de sujets n'ayant pas une place conséquente dans le cours, mais tout aussi intéressant.

Je l'ai déja énoncé mais je préfere le re-préciser clairement.

Vous apprendrez tout au long de la lecture, les bases de I'¢lectronique et de la programmation. Sauf que les notions électroniques
abordées seront d'un bas niveau et ne vous permettrons que la mise en ceuvre avec de la programmation. Vous ne pourrez donc
pas créer tout seul des petits montages n'utilisant que des composants électroniques sans avoir a programmer un
microcontrdleur. Cependant, il y aura deux grandes parties ou I'on verra beaucoup d'électronique, il s'agit des moteurs et des
capteurs. On utilisera des petits systémes électroniques (par exemple la commande de pilotage d'un moteur a courant continu)
associées a la programmation.

<’\| Pour ceux que I'électronique intéresserait beaucoup plus que ce quine sera abordé ici, je peut vous envoyer lire ce

/' cours quidébute également sur le Site du Zéro.

En revanche, coté programmation, vous allez passer en revue tous les points essentiels, car c'est I'outil principal de la mise en
ceuvre des systémes embarqués.

Paré pour commencer l'aventure ? Alors ony va ! @

Citation : olyte et Eskimon

Les auteurs de ce tutoriel ont le plaisir de présenter Astalaseven qui est 'ame bienveillante du tutoriel. Nous le félicitons pour

www.siteduzero.com

http://www.siteduzero.com/tutoriel-3-483697-l-electronique-de-zero.html
http://www.siteduzero.com

Arduino pour bien commencer en électronique et en programmation 8/326

sa capacité a ne pas déprimer face aux fautes immondes que l'on peut écrire dans ce tutoriel. Et nous le remercions pour le
travail qu'il effectue (corrections orthographiques, grammaticales, syntaxiques, etc.). Ainsi, nous avons décidé, en attendant
un statut plus approprié de la part des administrateurs du site, de l'officialiser en tant que co-auteur spécialisé dans la

correction de fautes.

Vous pouvez lapplaudir ! Si, si !! @

www.siteduzero.com

http://www4.smartadserver.com/call/pubjumpi/24617/184810/13290/M/1354452975300/?
http://www4.smartadserver.com/call/pubjumpi/24617/184810/13290/M/1354452975300/?
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 9/326

Dans cette premicre partie, nous ferrons nos premiers pas avec I'Arduino. Soyez attentif car il s'agit de prendre en main le
fonctionnement du systéme Arduino. Vous n'irezdonc pas bien loin si vous ne savez pas l'utiliser.

Présentation

Comment faire des montages ¢électroniques simplement en utilisant un langage de programmation ? La réponse, c'est le projet
Arduino quil'apporte. Vus allez le voir, celui-ci a été congu pour étre accessible a tous par sa simplicité¢. Mais il peut également
étre d'usage professionnel, tant les possibilités d'applications sont nombreuses. Ces cartes polyvalentes sont donc parfaites
pour nous, débutants, quine demandons qu'a apprendre et progresser.

Dans ce premier chapitre, nous allons donc parler du projet Arduino, de ses nombreuxavantages, mais aussi du matériel dont
nous aurons besoin durant tout le cours.

Arduino est un projet créé par une équipe de développeurs, composée de sixindividus : Massimo Banzi, David Cuartielles, Tom
Igoe, Gianluca Martino, David Mellis et Nicholas Zambetti. Cette équipe a créé le "systéme Arduino". C’est un outil qui va
permettre aux débutants, amateurs ou professionnels de créer des systémes électroniques plus ou moins complexes.

Le but et l'utilite

Le systéme Arduino, nous donne la possibilité¢ d'allier les performances de la programmation a celles de I'¢lectronique. Plus
précisément, nous allons programmer des systémes électroniques. Le gros avantage de I'¢électronique programmée c'est qu'elle
simplifie grandement les schémas électroniques et par conséquent, le colit de la réalisation, mais aussi la charge de travail a la
conception d'une carte électronique.

L'utilité est sans doute quelque chose que I'on pergoit mal lorsque I'on débute, mais une fois que vous serezrentré dans le
monde de I'Arduino, vous serez fasciné par l'incroyable puissance dont il est question et des applications possibles !

Applications

Le systéme Arduino nous permet de réaliser un grand nombre de choses, qui ont une application dans tous les domaines ! Je
vous l'ai dit, I'¢tendue de l'utilisation de 'Arduino est gigantesque. Pour vous donner quelques exemples, vous pouvez :

contrdler les appareils domestiques

fabriquer votre propre robot

faire un jeu de lumicres

communiquer avec l'ordinateur
télécommander un appareil mobile (modélisme)
etc.

Avec Arduino, nous allons faire des systémes électroniques tels qu'une bougie électronique, une calculatrice simplifiée, un
synthétiseur, etc. Tous ces systémes seront congus avec pour base une carte Arduino et un panel assez large de composants
¢électroniques.

Il existe pourtant dans le commerce, une multitude de plateformes qui permettent de faire la méme chose. Notamment les
microcontrdleurs « PIC » du fabricant Microchip. Nous allons voir pourquoi choisir 'Arduino. (Je tiens a préciser que je n'ai
aucun lien commercial avec eux ! @)

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 10/326

Le prix
En vue des performances qu’elles offrent, les cartes Arduino sont relativement peu couteuses, ce qui est un critére majeur pour
le débutant. Celle que nous utiliserons pour la suite du cours a un prix qui tourne aux environs de 25 € TTC ce qui est un bon
rapport qualité/prix.

La liberte

C'est un bien grand mot, mais elle définit de facon assez concise l'esprit de I'Arduino. Elle constitue en elle méme deux choses :

e Ielogiciel : gratuit et open source, développé en Java, dont la simplicité d'utilisation reléve du savoir cliquer sur la
souris.
e Le matériel : cartes ¢lectroniques dont les schémas sont en libre circulation sur internet.

Cette liberté a une condition : le nom « Arduino » ne doit étre employé que pour les cartes « officielles ». En somme, vous ne
pouvez pas fabriquer votre propre carte sur le modéle Arduino et lui assigner le nom « Arduino ».

Les cartes non officielles, on peut les trouver et les acheter sur Internet et sont pour la quasi-totalité compatibles avec les cartes
officielles Arduino.

La compatibilité
Le logiciel, tout comme la carte, est compatible sous les plateformes les plus courantes (Windows, Linux et Mac), contrairement
auxautres outils de programmation du commerce quine sont, en général, compatibles qu'avec Windows.

La communauté
La communauté Arduino est impressionnante et le nombre de ressources a son sujet est en constante évolution sur internet. De
plus, on trouve les références du langage Arduino ainsi qu’une page compléte de tutoriels sur le site arduino.cc (en anglais) et

arduino.cc (en frangais).

Finalement, nous retiendrons ce projet pour toutes ses qualités !

A présent, rapprochons-nous de « lutilisation » du systéme Arduino et voyons comment il se présente. Il est composé de deux
choses principales, qui sont : le matériel et le logiciel. Ces deux outils réunis, il nous sera possible de faire n'importe quelle
réalisation !

Le materiel

II's'agit d'une carte électronique basée autour d'un microcontroleur Atmega du fabricant Atmel, dont le prix est relativement bas
pour I'étendue possible des applications. Vila a quoiressemble la carte que nous allons utiliser :

www.siteduzero.com

http://www.siteduzero.com/tutoriel-3-10601-programmation-en-java.html
http://www.arduino.cc/
http://www.arduino.cc/fr/
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 11/326

T
o
|=.
4
H
=)
[=]
3
oL
=
=
=

ANALOG IN gy

Figure 1 : Carte Arduino "Uno"

Le logiciel

Le logiciel va nous permettre de programmer la carte Arduino. Il nous offre une multitude de fonctionnalités que nous verrons
dans un chapitre dédi¢. Wila a quoi il ressemble :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 12/326

=28 sketch_apr11a | Arduino 00232
File Edit Sketch Tools Help

Figure 2 : Logiciel Arduino

Le matériel que j’ai choisi d’utiliser tout au long de ce cours n’a pas un prix excessif et, je l'ai dit, tourne aux alentours de 25 €
TTC. Il existe plusicurs magasins en lignes et en boutiques qui vendent des cartes Arduino. Je vais vous en donner quelques-
uns, mais avant, il va falloir différencier certaines choses.

Les fabricants

Le projet Arduino est libre et les schémas des cartes circulent librement sur internet. D'ou la mise en garde que je vais faire : il se
peut qu'un illustre inconnu fabrique lui méme ses cartes Arduino. Cela n'a rien de mal en soi, s’il veut les commercialiser, il peut.
Mais s'il est malhonnéte, il peut vous vendre un produit défectueux. Bien sir, tout le monde ne cherchera pas a vous arnaquer.
Mais la prudence est de rigueur. Faites donc attention ou vous achetez vos cartes. Pour vous aider dans ce choix, je vous
donnerai une liste de quelques fabricants a quil'on peut faire confiance.

Les types de cartes

Il'y a trois types de cartes :

e [esdites « officielles » qui sont fabriquées en Italie par le fabricant officiel : Smart Projects

e [esdits « compatibles » quine sont pas fabriqués par Smart Projects, mais qui sont totalement compatibles avec les
Arduino officielles.

e [es « autres » fabriquées par diverse entreprise et commercialisées sous un nom différent (Freeduino, Seeduino,

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 13/326

Femtoduino, ...).

Les différentes cartes
Des cartes Arduino il en existe beaucoup ! Peut-étre une centaine toutes différentes ! Je vais vous montrer lesquelles on peut
utiliser et celle que juutiliserai dans le cours.
La carte Uno et Duemilanove

Nous choisirons d'utiliser la carte portant le nomde « Uno » ou « Duemilanove ». Ces deux versions sont presque identiques.

Figure 3 : carte Arduino "Uno" sur laquelle nous allons travailler

La carte Mega

La carte Arduino Mega est une autre carte qui offre toutes les fonctionnalités des précédentes, mais avec des options en plus.
On retrouve notamment un nombre d’entrées et de sorties plus importantes ainsi que plusieurs liaisons séries. En revanche, le
prixest plus élevé : plus de 50 €!

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 14/326

MADE
INITALY 5 o B

o

g
:

Figure 4 : carte Arduino "Mega"

Ou acheter ?

Il existe sur le net une multitude de magasins qui proposent des cartes Arduino. Vici la liste des distributeurs de cartes Arduino
en France. Elle se trouve également sur cette page.

AlyaSoft
Lextronic
ZaRtronic
Snootlab
Jlectronique
RobotShop
Semageek

@ Jaivu des cartes officielles "édition SMD/CMS". Ca a l'air bien aussi, c'est quoi la différence ? Je peux men servir ?

IIn'y a pas de différence ! enfin presque...

"SMD" signifie "Surface Mount Device", en frangais on appelle ¢a des "CMS" pour Composants Montés en Surface". Ces
composants sont soudés directement sur le cuivre de la carte, il ne la traverse pas comme les autres. Pour les cartes Arduino, on
retrouve le composant principal en édition SMD dans ces cartes. La carte est donc la méme, aucune différence pour le tuto. Les
composants sont les mémes, seule l'allure "physique" est différente. Par exemple, ci-dessus la "Mega" est en SMD et la Uno est
"classique".

Tout au long du cours, nous allons utiliser du matériel en supplément de la carte. Rassurez-vous le prixest bien moindre. Je vous

www.siteduzero.com

http://arduino.cc/en/Main/Buy
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 15/326

donne cette liste, cela vous évitera d'acheter en plusieurs fois. Vous allez devoir me croire sur parole sur leur intérét. Nous
découvrirons comment ils fonctionnent et comment les utiliser tout au long du tutoriel.

Afin que vous n'ayez pas a faire plusieurs commandes et donc subir plusieurs fois des frais de port si vous commandez par
internet, nous vous avons préparé des listes de courses. Pourquoi "des" ? Car tout le monde n'a pas les mémes ambitions et
envies de travailler les mémes choses. Vus aller donc trouver ci-dessous une liste de course par partie. Lorsque vous lirez le
cours, a chaque début de partie sera rappelé ce dont vous avez besoin pour suivre le tutoriel (dans l'introduction dans une balise
secret pour ne pas géner la lecture).

Enfin, a la fin de tout cela vous trouverez une "Méga-Liste" qui regroupe tous les composants nécessaires pour suivre tout le
tutoriel du début jusqu'a la fin (cependant les composants marqués d'une ' sont la a titre indicatif puisqu'ils seront intégrés
dans des chapitres prévus mais pas encore écrits. Leur présence est donc sujette a changement et nous ne pourrons pas assurer
a 100% que nous les utiliserons). Cette liste vous montrera aussides photos d'illustrations des composants.

Attention, ces listes ne contiennent que les composants en quantités minimales strictes. Libre a vous de prendre plus
de LED et de résistances par exemple (au cas ou vous en perdez ou détruisez...). Pour ce qui est des prix, j'ai regardé sur
différents sites grands publics (donc pas Farnell par exemple), ils peuvent donc paraitre plus élevé que la normale dans
la mesure ou ces sites amortissent moins sur des ventes a des clients fideles qui prennent tout en grande quantité...

Avant que joublie, 3 ¢léments n'apparaitront pas dans les listes et sont indispensables :

Une Arduino Uno Une BreadBoard (plaque d'essai) Un lot de fils pour brancher le tout !

Et maintenant, place auxlistes !

Partie 1 : [Théorie] Découverte de l'Arduino

Pas de liste de course pour cette partie !

Partie 2 : [Pratique] Gestion des entrées / sorties

Secret (cliquez pour afficher)

Désignation Carzlcz‘tlglzl;;ique Quantité I:;gcu;izg)e
rouge 6
verte 2
LED 0.10
jaune ou orange 2

entre 220 et 470 Ohm | 9

Résistance entre 2.2 et 4.7 kOhm | 2 0.10 —-—w— .

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

16/326

10 kOhm 2
Condensateur 10 nF 2 0.30
Bouton Poussoir - 2 0.40
Transistor 2N2222 ou BC547 2 0.60
Décodeur BCD MC14543 1 1.00
Afficheur 7 segments | anode commune 2 1.00
Total € 7.9 €

Partie 3 : [Pratique] Communication par la liaison série

Secret (cliquez pour afficher)

Désignation

Valeur -
Caractéristique

rouge

Quantité . dicatif (€)

jaune ou orange

Prix unitaire

LED 0.10
verte 1
10 kOhm 2 0.10

Résistance _—W-—- -
entre 220 et 470 Ohm | 3 0.10

Condensateur 10 nF 2 0.30 ’

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

17/326

Bouton Poussoir | -

0.40

Total €

22¢€

Partie 4 : [Pratique] Les grandeurs analogiques

Secret (cliquez pour afficher)

Valeur -

Prix unitaire

Désignation Caractéristique Quantité indicatif (€)
rouge 7
0.10
verte 3
LED
RVB 1 3.00
entre 220 et 470 Ohm | 10
Résistance 0.10 _'_“"_ .
1 kOhm 2
Potentiométre linéaire 10 kOhm 1 0.40 ﬁ ?
Condensateur électrochimique | 1000pF 1 1
Total € 6.6 €

Partie 5 : * [Pratique] Les capteurs

Secret (cliquez pour afficher)

& Attention, toute cette liste pourrait changer ! (d'ailleurs elle manque volontairement de précision sur les valeurs des

composants)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 18/326

Désignation Quantité

-
indicatif (€)

Photorésistance 1 1.00
Thermistance (CTN) 1 1.00
Capteur de choc (tilt) 1 3.00
Capteur de distance Sharp GP2D120 | 1 20.00
Total € 25€

Partie 6 : * [Pratique| Les moteurs

Secret (cliquez pour afficher)

Liste pas encore définie, désolé !

Partie 7 : [Pratique] L'affichage

Secret (cliquez pour afficher)

.. . Valeur - .., Prix unitaire
Désignation Caractéristique Quantité indicatif (€)

LED rouge 1 0.10
10 kOhm 2 0.10

Résistance ——W :
entre 220 et 470 Ohm | 1 0.10

Condensateur 10 nF 2 0.30 |’

Potentiomeétre linéaire 10 kOhm 1 0.40

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

19/326

16*2
Ecran LCD alphanumérique | 20*4 1 10
(valeur au choix)
Bouton Poussoir - 2 0.40
Total € 12.2 €

Partie 8 : * [Théorie] Processing et Arduino

Secret (cliquez pour afficher)

Liste pas encore définie, désolé !

Partie 9 : * [Théorie] Arduino et internet

Secret (cliquez pour afficher)

Liste pas encore définie, désolé !

Liste Globale !

Prix
Quantit unitaire
é indicatif
©

Désignation

Description

www.siteduzero.com

LED rouge 7

LED verte 3
0.10 Ce composant est une sorte de lampe un peu spécial. Nous nous en

] ' servirons principalement pour faire de la signalisation.

LED jaune (ou 5

orange)

Résistance

(entre 220 et 470 | 10

Ohm)

Résistance La résistance est un composant de base quis'oppose au passage du
0.10 w8~ | courant. On s'en sert pour limiter des courants maximums mais aussi

(entre 2.2et4.7 |2 e s el b

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

20/326

kOhm)

Résistance (10
kOhm)

puoul uauucd vIuUdCS.

Un bouton poussoir sert a faire passer le courant lorsqu'on appuie

Bouton Poussoir 040 ' dessus ou au contraire garder le circuit "éteint" lorsqu'il est relaché.
Transistor 0 Le transistor sert a plein de chose. Il peut étre utilisé pour faire de
(2N2222 ou 0.60 l'amplification (de courant ou de tension) mais aussi comme un
BC547) interrupteur commandé électriquement.
subficleu ¥ | Un afficheur 7 segments est un ensemble de LEDs (cf. ci-dessus)
segments (anode 1.00 | di . e ;
isposées géométriquement pour afficher des chiffres.
commune) n i
i |
Décodeur BCD Le décodeur BCD (Blnalre.C(.)de Décimal) permet piloter des’
1.00 afficheurs 7 segments en limitant le nombre de fils de données (4 au
(MC14543) .
licu de 7).
Condensateur 030 Le condensateur est un composant de base. Il sert a plein de chose.
(10 nF) ' On peut se le représenter comme un petit réservoir a électricité.
Dol 1 Celui-ci est un plus gros réservoir que le précédent
1000 pF plus & queep
Potentiomeétre . ,
linéaire (10 0.40 Le potentiometre est une résistance que l'on peut faire varier
kOhm) ' manuellement.
LED RVB 3.00 Une LED RVB (Rouge Vert Bleu) Vest I}He LED permettant de mélanger
les couleurs de bases pour en créer d'autres.
. L'écran LCD alphanumérique permet d'afficher des caractéres tels que
Ecran LCD . - e .
. 10 les chiffres et les lettres. Il va apporter de l'interactivité a vos projets
alphanumérique
‘ les plus fous !
*Module XBEE) Ce module permet de faire de la transmission sans fil, faible
distance/consommation/débit/prix.
Total € 22.6 €

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 21/326

Vous pourrez trouver ces composants chez:

Selectronic

Lextronic
Electronique diffusion
Radiospares

Farnell

Conrad

Ou dans un magasin ¢électronique proche de chez vous (et pas de frais de port) !

' Vous trouverez une liste non exhaustive des boutiques en ligne ou en magasin de matériel électronique sur ce forum
dédié.

Enfin, il existe des kits tout préts chez certains revendeurs. Nous n'en conseillerons aucun pour plusieurs raisons. Tout d'abord,
pour ne pas faire trop de publicité et rester conforme avec la charte du site. Ensuite, car il est difficile de trouver un kit "complet".
IIs ont tous des avantages et des inconvénients mais aucun (au moment de la publication de ces lignes) ne propose absolument
tous les composants que nous allons utiliser. Nous ne voulons donc pas que vous reveniez vous plaindre sur les forums car
nous vous aurions fait dépenser votre argent inutilement !

Cela étant dit, merci de ne pas nous spammer de MP pour que l'on donne notre avis sur tel ou tel kit ! Usez des forums
pour cela, il y a certainement toujours quelqu'un quisera la pour vous guider.
Eventuellement nous ouvrirons un post fixe sur les diférents kits pour les comparer (sans donner notre avis afin de rester objectifet car on a pas les moyens

de les acheter et tester leur qualité !)

A vos achats, préts ? Partez !

www.siteduzero.com

http://sciences.siteduzero.com/forum-83-773352-p1-les-meilleures-boutiques-d-electronique.html#r7420290
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 22/326

Quelques bases ¢lémentaires

En attendant que vous achetiez votre matériel, je vais vous présenter les bases de I'électronique et de la programmation en
¢électronique. Nous allons voir un peu comment fonctionne I'¢lectricité, pour ensuite nous pencher sur la programmation de
'¢lectronique.

Etant un adepte de ’apprentissage par la pratique, ce chapitre aura de trés pauvres notions, mais le cours sera enrichi de
manipulations diverses qui vous feront apprendre a utiliser le systéme Arduino et I’électronique.

La premiére partie de ce chapitre ne fait que reprendre quelques ¢éléments du cours sur I'électronique, que vous pouvez
consulter pour de plus amples explications.

Pour faire de I'€lectronique, il est indispensable de connaitre sur le bout des doigts ce que sont les grandeurs physiques. Alors,
avant de commencer a voir lesquelles on va manipuler, voyons un peu ce qu'est une grandeur physique.

Une grandeur physique est quelque chose qui se mesure. Par exemple, la pression atmosphérique est une grandeur physique, ou
bien la vitesse a laquelle circule une voiture en est aussiune. En électronique, nous ne mesurons pas ces grandeurs-1a, nous
avons nos propres grandeurs, qui sont : le courant et 1a tension.

La source d'énergie

L'énergie que I'on va manipuler (courant et tension) provient d'un générateur. Par exemple, on peut citer : la pile électrique, la
batterie électrique, le secteur électrique. Cette énergie qui est fournie par le générateur est restituée a un ou plusieurs récepteurs.
Le récepteur, d'aprés son nom, recoit de I'énergie. On dit qu'il la consomme. On peut citer pour exemples : un chauffage d’appoint,
un séche-cheveux, une perceuse.

O Retenez bien ce qui vient d'étre dit, car c'est fondamental pour comprendre la suite.

Charges électriques

Les charges électriques sont des grandeurs physiques mesurables. Elles constituent la matiére en elle méme. Dans un atome, qui
est élément primaire de la maticre, il y a trois charges ¢lectriques différentes : les charges positives, négatives ct neutres appelées
respectivement protons, électrons et neutrons. Bien, maintenant nous pouvons définir le courant qui est un déplacement
ordonné de charges électriques.

Conductibilite des matériaux

La notion de conductibilité est importante a connaitre, car elle permet de comprendre pas mal de phénoménes. On peut définir la
conductibilité comme étant la capacité d'un matériau a se laisser traverser par un courant électrique. De ces matériaux, on peut
distinguer quatre grandes familles :

les isolants : leurs propriétés empéchent le passage d'un courant électrique (plastique, bois, verre)
les semi-conducteurs : ce sont des isolants, mais qui laissent passer le courant dés lors que l'on modifie légérement leur
structure interne (diode, transistor, LED)

e les conducteurs : pour eux, le courant peut passer librement a travers tout en opposant une faible résistance selon le
matériau utilisé (or, cuivre, métal en général)

e les supraconducteurs : ce sont des types bien particuliers qui, a une température extrémement basse, n'opposent
quasiment aucune résistance au passage d'un courant électrique

Sens du courant

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-483697-l-electronique-de-zero.html
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 23/326

Le courant ¢électrique se déplace selon un sens de circulation. Un générateur électrique, par exemple une pile, produit un courant.
Et bien ce courant va circuler du pole positif vers le pdle négatif de la pile, si et seulement sices deuxpoles sont reliés entre eux
parun fil métallique ou un autre conducteur. Ceci, c'est le sens conventionnel du courant.

On note le courant par une fléche quiindique le sens conventionnel de circulation du courant :

>_

10V
— pile

Figure 1 : Indication du sens du courant

Intensite du courant

1 Lintensité du courant est la vitesse a laquelle circule ce courant. Tandis que le courant est un déplacement ordonné de
charges ¢électriques. Woila un point a ne pas confondre.

On mesure la vitesse du courant, appelée intensité, en Ampeéres (noté A) avec un Ampéremétre. En général, en électronique de
faible puissance, on utilise principalement le milli-Ampére (mA) et le micro-Ampére (nA), mais jamais bien au-dela.

Clest tout ce qu'il faut savoir sur le courant, pour l'instant.

Autant le courant se déplace, ou du moins est un déplacement de charges électriques, autant la tension est quelque chose de
statique. Pour bien définir ce qu'est la tension, sachez qu'on la compare a la pression d'un fluide.

Par exemple, lorsque vous arrosez votre jardin (ou une plante, comme vous préférez) avec un tuyau d'arrosage et bien dans ce
tuyau, il y a une certaine pression exercée par l'eau fournie par le robinet. Cette pression permet le déplacement de l'eau dans le
tuyau, donc créer un courant. Mais si la pression n'est pas assez forte, le courant ne sera luinon plus pas assez fort. Pour

preuve, vous n'avez qu'a pincer le tuyau pour constater que le courant ne circule plus.

On appelle ce "phénomene de pression" : la tension. Je n'en dis pas plus car se serait vous embrouiller. @

Notation et unite

La tension est mesurée en Volts (notée V) par un MWltmétre. On utilise principalement le Wlt, mais aussison sous-multiple qui est
le milli-Volt (mV).

On représente la tension, d'une pile par exemple, grace a une fléche orientée toujours dans le sens du courant auxbornes d'un
générateur et toujours opposée au courant, aux bornes d'un récepteur :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 24/326

p - 4

Upn @ U

Ampoule

M
Figure 2 : Fléchage de la tension

La différence de potentiel

Sur le schéma précédent, on a au point M une tension de OV et au point P, une tension de 5V. Prenons notre Voltmétre et
mesurons la tension auxbornes du générateur. La borne COM du Wltmétre doit étre reliée au point M et la borne "+" au point P.

Le potentiel au point P, soustrait par le potentiel au point M vaut : [/p — [Jpy = 5 — () = 5V . On dit que la différence de
potentiel entre ces deuxpoints est de 5V. Cette mesure se note donc : {7 p s .

Sion inverse le sens de branchement du Woltmetre, la borne "+" est reliée au point M et la borne COM au point P. La mesure que
l'on prend est la différence de tension (= potentiel) entre le point M etle point P: {/py — Up = 0 — b = —HV

Cette démonstration un peu surprenante vient du fait que la masse est arbitraire.

Justement, parlons-en ! La masse est, en électronique, un point de référence.

Notion de référentiel
Quand on prend une mesure, en général, on la prend entre deux points bien définis. Par exemple, si vous vous mesurez, vous
prenez la mesure de la plante de vos pieds jusqu'au sommet de votre téte. Si vous prenez la plante de vos pieds pour référence
(c'est-a-dire le chiffre zéro inscrit sur le metre), vous lirez Im70 (par exemple). Si vous inversez, non pas la téte, mais le metre et
que le chiffre zéro de celui-ci se retrouve donc au sommet de votre téte, vous serez obligé de lire la mesure a -1m?70.
Et bien, ce chiffre zéro est la référence qui vous permet de vous mesurer. En électronique, cette référence existe, on l'appelle la
masse.

Qu'est ce que c'est ?
La masse, et bien c'est un référentiel. En électronique on voit la masse d'un montage comme étant le zéro Wolt (0V). C'est le point
qui permet de mesurer une bonne partie des tensions présentes dans un montage.

Représentation et notation

Elle se représente par ce symbole, sur un schéma électronique :

Figure 3 : Symbole de la masse

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 25/326

Vous ne le verrez pas souvent dans les schémas de ce cours, pour la simple raison qu'elle est présente sur la carte que l'on va
utiliser sous un autre nom: GND. GND est un diminutif du terme anglais " Ground" qui veut dire terre/sol.

Donc, pour nous et tous les montages que l'on réalisera, ce sera le point de référence pour la mesure des tensions présentes sur
nos circuits et le zéro Volt de tous nos circuits.

Une référence arbitraire
Pour votre culture, sachez que la masse est quelque chose d'arbitraire. Je 'ai bien montré dans l'exemple au début de ce

paragraphe. On peut changer l'emplacement de cette référence et, par exemple, trés bien dire que le 5V est la masse. Ce qui aura
pour conséquence de modifier 'ancienne masse en -5V.

En ¢électronique il existe plein de composants qui ont chacun une ou plusieurs fonctions. Nous allons voir quels sont ces
composants dans le cours, mais pas tout de suite. Car, maintenant, on va aborder la résistance qui est LE composant essentiel en
électronique.

Présentation
Clest le composant le plus utilisé en électronique. Sa principale fonction est de réduire l'intensité du courant.

Ce composant se présente sous la forme d'un petit boitier fait de divers matériaux et repéré par des anneauxde couleur indiquant
la valeur de cette derni¢re. Photo de résistance :

—ne—

Figure 4 : Photo de résistance

Symbole

Le symbole de la résistance ressemble étrangement a la forme de son boitier :

—|__

Figure 5 : Symbole de la résistance

Loi d'ohm

Le courant traversant une résistance est régi par une formule assez simple, qui se nomme la loi d'ohm :

I==
R

e I:intensité quitraverse la résistance en Ampéres, notée 4
e U:tension auxbomes de la résistance en Wlts, notée |~
e R:valeurde la résistance en Ohms, notée [}

En général, on retient mieux la formule sous cette forme : {7 — R % [

Unité
L'unité de la résistance est 'ohm. On le note avec le symbole oméga majuscule : [} .

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

26/326

Le code couleur

La résistance posséde une suite d'anneaux de couleurs différentes sur son boitier. Ce tableau vous permettra de lire ce code qui

correspond a la valeur de la résistance :

Couleur Chiffre Coefficient multiplicateur Puissance Tolérance

©

Noir [0 1 10° -
Brun |1 10 10t +1%
Rouge |2 100 102 +2%
Orange |3 1000 10° -
4 10 000 10° -
Vert 5 100 000 10° +0.5%
Bleu 6 1 000 000 108 4+ 0.25%
Violet |7 10 000 000 107 +0.10%
Gris 8 100 000 000 108 +0.05%
9 1 000 000 000 10° -
Or 0.1 0.1 10-1 +5%
0.01 0.01 102 +10%
(absent) | - - - +20%

Bon, pour I'instant vous savez I'essentiel. On approfondira un peu dans la suite du cours. Parlons de programmation

maintenant.

Je vais maintenant vous présenter un outil trés pratique lorsque l'on fait ses débuts en électronique ou lorsque l'on veut tester
rapidement/facilement un montage. Cet accessoire s'appelle une breadboard (littéralement : Planche a pain, techniquement :
plaque d'essai sans soudure). Pour faire simple, c'est une plaque pleine de trous !

Principe de la breadboard

Certes la plaque est pleine de trous, mais pas de maniére innocente ! En effet, la plupart d'entre euxsont reliés. Wici un petit

schéma rapide qui va aider a la compréhension.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 27/326

R R 2 T R & w w w T T
w wow W w O - o oW R - o ow R W - om ow W W

o e om W - & & & o - " w oW - & & & = - & & & &
R - oo ow oW O O O

Comme vous pouvez le voir sur l'image, j'ai dessiné des zones. Les zones rouges et noires correspondent a l'alimentation.
Souvent, on retrouve deux lignes comme celles-ci permettant de relier vos composants aux alimentations nécessaires. Par
convention, le noir représente la masse et le rouge est l'alimentation (+5V, +12V, -5V... ce que vous voulez y amener).
Habituellement tous les trous d'une méme ligne sont reliés sur cette zone. Ainsi, vous avez une ligne d'alimentation parcourant
tout le long de la carte.

Ensuite, on peut voir des zones en bleu. Ces zones sont reliées entre elles par colonne. Ainsi, tous les trous sur une méme
colonne sont reliés entre eux. En revanche, chaque colonne est distincte. En faisant chevaucher des composants sur plusieurs
colonnes vous pouvez les connecter entre eux.

Dermnier point, vous pouvez remarquer un espace coupant la carte en deux de manicre symétrique. Cette espace coupe aussi la
liaison des colonnes. Ainsi, sur le dessin ci-dessus on peut voir que chaque colonne possede 5 trous reliés entre eux. Cet espace
au milieu est normalisé et doit faire la largeur des circuits intégrés standards. En posant un circuit intégré a cheval au milieu,
chaque patte de ce dernier se retrouve donc sur une colonne, isolée de la précédente et de la suivante.

Sivous voulez voir plus concrétement ce fonctionnement, je vous conseille d'essayer le logiciel Fritzing, qui permet de faire des
circuits de maniére assez simple et intuitive. Vous verrez ainsi comment les colonnes sont séparées les unes des autres. De plus,
ce logiciel sera utilisé pour le reste du tuto pour les captures d'écrans des schémas électroniques.

Il faut préciser que nous allons parler de programme informatique et non de programme télé !

En informatique, on utilise ce qu’on appelle des programmes informatiques. Pour répondre a la question, je dirai par analogie
qu’un programme informatique est une « liste » d’informations (comme celle que vous avez pour préparer un diner) qui indique a
l’ordinateur un certain nombre de taches qu’il doit effectuer. Prenons votre lecteur multimédia qui est un programme
informatique. Ce programme est donc une « liste d’informations » lue par votre ordinateur. Elle lui indique qu’il doit lire de la
musique stockée sur votre disque dur.

Nous nous allons créer des programmes, ou bien programmer.
Voici quelques exemples de programmes informatiques :
e \otre navigateur Web (Internet Explorer, Firefox, Chrome, ...)

e \otre lecteur multimédia (VLC, Windows Media Player, ...)
e \btre antivirus (avast!, antivira, ...)

L'objectif de ce cours n'est pas de vous apprendre a faire votre propre navigateur web, ou votre propre systéme d'exploitation,
non ce serait bien trop difficile et I'intérét resterait plutdt restreint. Je vais vous apprendre a faire des programmes qui vont étre
exécutés par une carte électronique. Le but étant de vous former a la programmation de cette carte qui vous permettra par la suite
de réaliser vos propres applications.

Créer un programme informatique

Ecrire un programme informatique ne s'improvise pas comme ¢a ! Il faut d'abord savoir en quel langage il s'écrit et apprendre la
syntaxe de ce langage.

www.siteduzero.com

http://fritzing.org/
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 28/326

@ Tiens ! Mais qu'est-ce qu'un langage informatique ?

Un langage informatique est un langage qui va vous permettre de « parler » a votre ordinateur. Reprenons notre analogie avec la
liste de préparation au diner de ce soir. Sur cette liste, vous indiquez avec des mots ce que vous devez préparer pour ce diner.
Ces mots sont écrits en langue francaise, mais pourraient trés bien étre en anglais ou en japonais. Cependant, ce n’est niavec du
francais niavec de I’anglais et encore moins avec du japonais que nous écrirons un programme informatique. Nous écrirons le
programme avec un langage informatique, c'est-a-dire avec un langage que 'ordinateur peut comprendre.

Il existe, comme pour les langues, une diversité assez impressionnante de langage informatique. Heureusement, nous ne devrons
en apprendre qu’un seul. Ouf'! @ Le langage que nous devrons apprendre s’appelle le langage Arduino.

Le compilateur

Tout a I’heure, quand je vous disais que I’ordinateur comprenait le langage Arduino, je vous ai menti. @ Soyezsans crainte, ce
n’est pas bien grave car j’ai seulement omis de préciser un détail !

En fait, 'ordinateur ne comprend pas directement le langage Arduino. En effet, 'ordinateur ne résonne qu’avec des états
logiques. On parle d’états binaires, car ils ne peuvent prendre que deux valeurs : « 0» ou « 1 ».

Vila un exemple qui va vous effrayer : sachez que nous utiliserons des mots en provenance de la langue anglaise pour écrire un
programme informatique (non ce n’est pas ¢a qui est effrayant ! @), mais comme 1’ordinateur ne comprend pas les lettres et les

chiffres (juste 0 et 1), nous devons écrire chaque mot en code binaire. Par exemple, la lettre « A » majuscule s’écrit en binaire :
1000001 ; et la lettre « m» minuscule : 1101101. Alors imaginez seulement si vous deviez transcrire le mot «
Anticonstitutionnellement » en binaire !

Heureusement, des fews ingénicurs en informatiques ont créé ce qu’on appelle le compilateur. C’est en fait un programme
informatique qui va transcrire a notre place les mots en langage binaire. C'est donc le traducteur qui se chargera de traduire le
langage Arduino (que nous allons apprendre prochainement) en langage binaire (compréhensible par I’ordinateur). Ce traducteur
est le logiciel Arduino, dont nous allons parler dans un prochain chapitre.

Au jour d'aujourd'hui, '€électronique est de plus en plus remplacée par de I'électronique programmée. On parle aussi
d'électronique embarquée ou d'informatique embarquée. Son but est de simplifier les schémas électroniques et par conséquent
réduire I'utilisation de composants électroniques, réduisant ainsi le cout de fabrication d’un produit. Il en résulte des systémes
plus complexes et performants pour un espace réduit.

Comment programmer de l'électronique ?
Pour faire de 1’électronique programmée, il faut un ordinateur et un compos ant programmable. Il existe tout plein de variétés

différentes de composants programmables, a noter : les microcontréleurs, les circuits logiques programmables, ... Nous, nous
allons programmer des microcontréleurs. Mais a ce propos, vous ai-je dit qu'est ce que c'était qu'un microcontroleur ?

Le microcontroleur

@ Qu'est ce que c'est ?

Je I’ai dit a I’instant, le microcontréleur est un composant électronique programmable. On le programme par le biais d’un
ordinateur grace a un langage informatique, souvent propre au type de microcontréleur utilisé. Je n’entrerai pas dans I'utilisation
poussée de ces derniers car le niveau est rudement élevé et la compréhension difficile.

Voici la photo d’un microcontréleur :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 29/326

Figure 6 : Photo de microcontroleur

Composition des éléments internes d'un micro-controleur

Un microcontréleur est constitué par un ensemble d’éléments qui ont chacun une fonction bien déterminée. Il est en fait
constitué¢ des mémes ¢éléments que sur la carte mére d’un ordinateur. Sion veut, c’est un ordinateur (sans écran, sans disque dur,
sans lecteur de disque) dans un espace trés restreins.

Je vais vous présenter les différents éléments qui composent un microcontréleur typique et uniquement ceux qui vont nous étre
utiles.

La mémoire
Ilen posseéde 4 types :

e [amémoire Flash: C'est celle qui contiendra le programme a exécuter (celui que vous allez créer!).Cette mémoire est
effagable et ré-inscriptible (c'est la méme qu'une clé¢ USB par exemple)

e RAM :c'est la mémoire dite "vive", elle va contenir les variables de votre programme. Elle est dite "volatile" car elle
s'efface sion coupe l'alimentation du micro-contréleur (comme sur un ordinateur).

e EEPROM : Cest le disque dur du microcontrdleur. Vous pourrez y enregistrer des infos qui ont besoin de survivre dans le
temps, méme si la carte doit étre arrétée. Cette mémoire ne s'efface pas lorsque l'on éteint le microcontréleur ou lorsqu'on
le reprogramme.

Les registres : c'est un type de mémoire utilisé par le processeur. Nous n'en parlerons pas tout de suite.
La mémoire cache : c'est une mémoire qui fait la liaison entre les registres et la RAM. Nous n'en parlerons également pas
tout de suite.

Le processeur
Clest le composant principal du micro-controleur. C'est lui qui va exécuter le programme que nous lui donnerons a traiter. On le
nomme souvent le CPU.

Diverses choses

Nous verrons plus en détail l'intérieur d'un micro-contrdleur, mais pas tout de suite, c'est bien trop compliqué. Je ne voudrais pas
perdre la moitié¢ des visiteurs en un instant !

Fonctionnement

Avant tout, pour que le microcontrdleur fonctionne, il lui faut une alimentation ! Cette alimentation se fait en générale par du +5V.
D'autres ont besoin d'une tension plus faible, du +3,3V.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 30/326

En plus d'une alimentation, il a besoin d'un signal d'horloge. C'est en fait une succession de 0 et de 1 ou plutdt une succession
de tension OV et 5V. Elle permet en outre de cadencer le fonctionnement du microcontrdleur a un rythme régulier. Grace a elle, il
peut introduire la notion de temps en programmation. Nous le verrons plus loin.

Bon, pour le moment, vous n'avez pas besoin d'en savoir plus. Passons a autre chose.

@ On va apprendre a compter ?

Non, je vais simplement vous expliquer ce que sont les bases de comptage. C'est en fait un systéme de numération qui permet de
compter en utilisant des caractéres de numérations, on appelle ¢ca des chiffres.

Cas simple, la base 10

La base 10, vous la connaissezbien, c'est celle que I'on utilise tous les jours pour compter. Elle regroupe un ensemble de 10
chiffres : 0,1,2,3,4,5,6,7,8,9. Avec ces chiffres, on peut créer une infinité de nombres (ex: 42, 89, 12872, 14.56, 9.3, etc...).
Cependant, voyons cela d'un autre ceil...

L'unité sera représenté par un chiffre multiplié par 10 a la puissance 0.

La dizaine sera représenté par un chiffre multiplié par 10 a la puissance 1.
La centaine sera représenté par un chiffre multipli¢ par 10 a la puissance 2.
[...]

Le million sera représenté par un chiffre multiplié par 10 a la puissance 6.
etc...

En généralisant, on peut donc dire qu'un nombre (composé de chiffres) est la somme des chiffres multipliés par 10 a une certaine
puissance.

Par exemple, sion veut écrire 1024, on peut l'écrire :
11000 +0x1004+2x104+4x 1 =1024
ce qui est équivalent a écrire :
1x10° +0x 10242 x 10" + 4 x 10° = 1024

Et bien c'est ¢a, compter en base 10 ! Vous allez mieux comprendre avec la partie suivante.

Cas informatique, la base 2 et la base 16

En informatique, on utilise beaucoup les bases 2 et 16. Elles sont composées des chiffres suivants :

e pourlabase 2 :les chiffres Oet 1.
e pourlabase 16 : on retrouve les chiffres de la base 10, plus quelques lettres : 0,1,2,3,4,5,6,7,8,9,A,B,C.D,E,F

On appelle la base 2, la base binaire. Elle représente des états logiques 0 ou 1. Dans un signal numérique, ces états
correspondent a des niveaux de tension. En électronique numérique, trés souvent il s'agira d'une tension de OV pour un état
logique 0 ; d'une tension de 5V pour un état logique 1. On parle aussi de niveau HAUT ou BAS (in english : HIGH or LOW). Elle
existe a cause de la conception physique des ordinateurs. En effet, ces derniers utilisent des millions de transistors, utilisés pour
traiter des données binaires, donc deux états distincts uniquement (0 ou 1).

Pour compter en base 2, ce n'est pas trés difficile si vous avezsaisice qu'est une base. Dans le cas de la base 10, chaque chiffre
était multiplié par 10 a une certaine puissance en partant de la puissance 0. Et bien en base 2, plutot que d'utiliser 10, on utilise 2.

Par exemple, pour obtenir 11 en base 2 on écrira : 1011... En effet, cela équivaut a faire :

Ix24+0x224+1x20+1x2°

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 31/326

soit :

1x84+0x44+1x24+1x1

d Un chiffre en base 2 s'appelle un bit. Un regroupement de 8 bits s'appelle un octet. Ce vocabulaire est trés important
donc retenez-le !

La base 16, ou base hexadécimale est utilisée en programmation, notamment pour représenter des octets facilement. Reprenons
nos bits. Sion en utilise quatre, on peut représenter des nombres de 0 (0000) a 15 (1111). Ca tombe bien, c'est justement la portée
d'un nombre hexadécimale ! En effet, comme dit plus haut il va de 0 (0000 ou 0) a F (1111 ou 15), ce qui représente 16 "chiffres" en
hexadécimal. Grace a cela, on peut représenter "simplement" des octets, en utilisant juste deux chiffres hexadécimaux.

Les notations

Ici, rien de trés compliqué, je vais simplement vous montrer comment on peut noter un nombre en disant a quelle base il
appartient.

e Base binaire : (10100010),
e Base décimale : (162)
e Base hexadécimale : (A2)4

A présent, voyons les différentes méthodes pour passer d'une base a l'autre grace aux conversions.

Souvent, on a besoin de convertir les nombres dans des bases différentes. On retrouvera deux méthodes, bonnes a savoir 'une
comme l'autre. La premicre vous apprendra a faire les conversions "a la main", vous permettant de bien comprendre les choses.
La seconde, celle de la calculatrice, vous permettra de faire des conversions sans vous fatiguer.

Décimale <-> Binaire
Pour convertir un nombre décimal (en base 10) vers un nombre binaire (en base 2, vous suivez c'est bien !), il suffit de savoir
diviser par ... 2! Ca ira ? Prenez votre nombre, puis divisez le par 2. Divisez ensuite le quotient obtenu par 2... puis ainside suite

jusqu'a avoir un quotient nul. Il vous suffit alors de lire les restes de bas en haut pour obtenir votre nombre binaire...

Par exemple le nombre 42 s'écrira 101010 en binaire. VWila un schéma de démonstration de cette méthode :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 32/326

422
021]2
1

Sens de lecture

-

On garde les restes (en rouge) et on li le résultat de bas en haut.

Binaire <-> Hexadécimal
La conversion de binaire a 'hexadécimal est la plus simple a réaliser.

Tout d'abord, commencez a regrouper les bits par blocs de quatre en commengant par la droite. Siiln'y a pas assezde bits a
gauche pour faire le dernier groupe de quatre, on rajoute des zéros.

Prenons le nombre 42, qui s'écrit en binaire, on I'a vu, 101010, on obtiendra deux groupes de 4 bits qui seront 0010 1010.
Ensuite, il suffit de calculer bloc par bloc pour obtenir un chiffre hexadécimal en prenant en compte la valeur de chaque bit. Le
premier bit, de poids faible (tout a droite), vaudraparexemple A(] ¥ 8 + 0w 4 +1 % 24+ 0x 1 =10:Aen
hexadécimal). Ensuite, l'autre bloc vaudra simplement 2 ([w 8 + 0w 4 +1 % 2 4+ 0% 1 = 2). Donc 42 en base décimale
vaut 2A en base hexadécimale, ce qui s'écrit aussi (42}1,0 = (2,4}1,5

Pour passer de hexadécimal a binaire, il suffit de faire le fonctionnement inverse en s'aidant de la base décimale de temps en
temps. La démarche a suivre est la suivante :

e - Je sépare les chiffres un par un (on obtient 2 et A)
e -Je "convertis" leurs valeurs en décimal (ce quinous fait 2 et 10)
e - Je met ces valeurs en binaire (et on a donc 0010 1010)

Décimal <-> Hexadécimal

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 33/326

Ce cas est plus délicat a traiter, car il nécessite de bien connaitre la table de multiplication par 16. @ Comme vous avezbien

suivi les explications précédentes, vous comprenez comment faire ici... Mais comme je suis nul en math, je vous conseillerais de
faire un passage par la base binaire pour faire les conversions !

Pour en apprendre plus, vous pouvezsuivre ce lien qui explique de facon plus compléete ce qui vient d'étre dit
maintenant.

Méthode rapide

Pour cela, je vais dans Démarrer / Tous les programmes / Accessoires / Calculatrice . Quia dit que j'étais fainéant ? ®

E Calculatrice

Edition Affichage ?
|)
{(JHex @ Déc 0t O Bin (%) Degrés) Radians () Grades
L] Hyp | | | Retour amiére | CE | | C
| Sta | FE () MC T 2 9 Med || And
dms BExp In MR 4 5 & = Cr Hor
sin Ky log M5 1 2 3 - Lsh || Mot
cos || x™3 n! M= 0 /- . + = It
tan (| x™2 14 pi

Vous voyezen haut qu'ily a des options a cocher pour afficher le nombre entré dans la base que I'on veut. Présentement, je suis
en base 10 (décimale - bouton Déc). Sije clique sur Hex :

| 21|

(3)Hex (O Déc)0t (O Bin (&) Qmot () Dmet Mot () Octet

Je vois que mon nombre 42 a été convertien : 2A.

Et maintenant, sije clique sur Bin :

| 1n1n1u-|

{JHex (O Déc ()0t (*)Bin (®) Qmot () D-mat (I Mat () Octet

Notre nombre a été convertien : 00101010

Oui, c'est vrai ¢a. Pour quoi on a pas commencé par expliquer ¢a ? Qui sait. @
Maintenant que vous avez acquis les bases essentielles pour continuer le cours, nous allons voir comment se présente le
matériel que vous venez d'acheter et dont nous aurons besoin pour suivre ce cours.

www.siteduzero.com

http://sciences.siteduzero.com/forum-83-702779-p1-beta-on-les-bases-numeriques.html
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 34/326

Le logiciel

Afin de vous laisser un léger temps de plus pour vous procurer votre carte Arduino, je vais vous montrer bri¢vement comment
se présente le logiciel Arduino.

IIn’y a pas besoin d’installer le logiciel Arduino sur votre ordinateur puisque ce dernier est une version portable. Regardons
ensemble les étapes pour préparer votre ordinateur a I'utilisation de la carte Arduino.

Pour télécharger le logiciel, il faut se rendre sur la page de téléchargement du site arduino.cc.

Vous avez deux catégories :

e Download : Dans cette catégorie, vous pouvez télécharger la derniére version du logiciel. Les plateformes Windows,
Linux et Mac sont supportées par le logiciel. C'est donc ici que vous allez télécharger le logiciel.

e Previous IDE Versions : Dans cette catégorie-1a, vous aveztoutes les versions du logiciel, sous les plateformes
précédemment citées, depuis le début de sa création.

Sous Windows

Pour moi ce sera sous Windows. Je clique sur le lien Windows et le fichier apparait :

Figure 1 : Téléchargement du logiciel Arduino

Une fois que le téléchargement est terminé, vous n'avez plus qu'a décompresser le fichier avec un utilitaire de décompression (7-
zip, WinRar, ...). A l'intérieur du dossier se trouvent quelques fichiers et l'exécutable du logiciel :

Figure 2 : Exécutable du logiciel Arduino

Mac os

Cliquez sur le lien Mac OS. Un fichier .dmg apparait. Enregistrez-le.

Figure 3 : Téléchargement sous Mac os

Double-cliquez sur le fichier .dmg :

www.siteduzero.com

http://arduino.cc/en/Main/Software
http://uploads.siteduzero.com/files/309001_310000/309926.gif
http://uploads.siteduzero.com/files/309001_310000/309928.gif
http://uploads.siteduzero.com/files/311001_312000/311563.png
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 35/326

-

Figure 4 : Contenu du téléchargement

On y trouve l'application Arduino (.app), mais aussile driver a installer (mpkg). Procédez a I'installation du driver puis installez
l'application en la glissant dans le raccourci du dossier "Applications" qui est normalement présent sur votre ordinateur.

Sous Linux
Rien de plus simple, en allant dans la logithéque, recherchez le logiciel "Arduino".
Sinon vous pouvez aussipasser par la ligne de commande:

Code : Console

$ sudo apt-get install arduino

Plusieurs dépendances seront installées en méme temps.

O Je rajoute un lien qui vous meénera vers la page officielle.

Lancons le logiciel en double-cliquant sur l'icone avec le symbole "infinie" en vert. C'est ’exécutable du logiciel.

Aprés un léger temps de réflexion, une image s'affiche :

Figure 5 : lancement du logiciel Arduino

Cette fois, apreés quelques secondes, le logiciel s'ouvre. Une fenétre se présente a nous :

www.siteduzero.com

http://uploads.siteduzero.com/files/311001_312000/311565.png
http://www.arduino.cc/playground/Learning/Linux
http://uploads.siteduzero.com/files/308001_309000/308014.png
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 36/326

=28 sketch_apr11a | Arduino 00232
File Edit Sketch Tools Help

E) B

Figure 6 : fenétre du logiciel Arduino

Ce qui saute aux yeux en premier, c'est la clarté de présentation du logiciel. On voit tout de suite son interface intuitive. Voyons
comment se compose cette interface.

J'ai découpé, grace a mon ami paint.net, I'image précédente en plusieurs parties :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 37/326

1 2

@ sketch_apr11a | Ar4uino 0022 M=1E3 3

ile Edit Sketch Tools Help _
(=) T e

Figure 7 : Présentation des parties principales du logiciel

Correspondance

Le cadre numéro 1 : ce sont les options de configuration du logiciel
Le cadre numéro 2 : il contient les boutons qui vont nous servir lorsque I'on va programmer nos cartes
Le cadre numéro 3 : ce bloc va contenir le programme que nous allons créer

Le cadre numéro 4 : celui-ci est important, car il va nous aider a corriger les fautes dans notre programme. C'est le
débogueur.

Attaquons-nous plus sérieusement a l'utilisation du logiciel. La barre des menus est entourée en rouge et numérotée par le
chiffre 1.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 38/326

C’est principalement ce menu que ’on va utiliser le plus. Il dispose d’un certain nombre de choses qui vont nous étre tres utiles :

oo sketch_apri1a | Arduino 0022 M=E3
Edit Skekch Tools Help

= Chr|+1
Qpen... Chrl+O
Sketchboak, [
Examples [-
Close Chrl+t ;
Save Chrl+3
Save As... Chrl+Maj+5
Upload ko Ifi2 Board ki1
Page Setup CErl+Maj+P
Print Chrl+P
Preferences Ckrl+Comma
Quit Chl+0
b

Figure 8 : contenu du menu "File"

e New (nouveau) : va permettre de créer un nouveau programme. Quand on appuie sur ce bouton, une nouvelle fenétre,
identique a celle-ci, s'affiche a I'écran
Open... (ouvrir) : avec cette commande, nous allons pouvoir ouvrir un programme existant
Save / Save as... (enregistrer / enregistrer sous...) : enregistre le document en cours / demande ou enregistrer le document
en cours

o FExamples (exemples) : ceciest important, toute une liste se déroule pour afficher les noms d'exemples de programmes
existants ; avec ¢a, vous pourrez vous aider pour créer vos propres programmes

Le reste des menus n'est pas intéressant pour l'instant, on y reviendra plus tard, avant de commencer a programmer.

Voyons a présent a quoi servent les boutons, encadrés en rouge et numérotés par le chiffre 2.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 39/326

&® sketch_ap:*1a | AiZaino 0622

Figure 9 : Présentation des boutons

e Bouton 1 : Ce bouton permet de vérifier le programme, il actionne un module qui cherche les erreurs dans votre
programme

e Bouton 2 : Créer un nouveau fichier

e Bouton 3 : Sauvegarder le programme en cours

e Bouton 4:On n'y touche pas pour l'instant @

e Bouton 5 : Stoppe la vérification
e Bouton 6 : Charger un programme existant
e Bouton 7 : Compiler et envoyer le programme vers la carte

Enfin, on va pouvoir s'occuper du matériel que vous devriez tous posséder en ce moment méme : la carte Arduino !

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 40/326

Le matériel

Jespére que vous disposez a présent du matériel requis pour continuer le cours car dans ce chapitre, je vais vous montrer
comment se présente votre carte, puis comment la tester pour vérifier son bon fonctionnement.

Pour commencer notre découverte de la carte Arduino, je vais vous présenter la carte en elle-méme. Nous allons voir comment
s'en servir et avec quoi. J'ai représenté en rouge sur cette photo les points importants de la carte.

1 ot 1 A o
DIGITAL (PWM~) E &

()
aowms WRDUINO
il

H:_;ﬂqwm o v 0 [{)7
: :
-

¥
pe 20

e

i

o0 D

HWW.ARDUINO.CE |

Figure 1 : Présentation de la carte Arduino

Voyons quels sont ces points importants et a quoi ils servent.

Le micro-controleur

Voila le cerveau de notre carte (en 1). C’est lui qui va recevoir le programme que vous aurez créé et qui va le stocker dans sa
mémoire puis I’exécuter. Grace a ce programme, il va savoir faire des choses, qui peuvent étre : faire clignoter une LED, afficher
des caractéres sur un écran, envoyer des données a un ordinateur, ...

Alimentation

Pour fonctionner, la carte a besoin d'une alimentation. Le microcontrdleur fonctionnant sous 5V, la carte peut étre alimentée en 5V
par le port USB (en 2) ou bien par une alimentation externe (en 3) qui est comprise entre 7V et 12V, Cette tension doit étre
continue et peut par exemple étre fournie par une pile 9V. Un régulateur se charge ensuite de réduire la tension a 5V pour le bon
fonctionnement de la carte. Pas de danger de tout griller donc! Veuillez seulement a respecter l'intervalle de 7Va 15V (méme sile
régulateur peut supporter plus, pas la peine de le retrancher dans ses limites)

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 41/326

Visualisation

Les trois "points blancs" entourés en rouge (4) sont en fait des LED dont la taille est de 'ordre du millimétre. Ces LED servent a
deuxchoses :

e C(Celle tout en haut du cadre : elle est connectée a une broche du microcontréleur et va servir pour tester le matériel.
Nota : Quand on branche la carte au PC, elle clignote quelques secondes.

e Les deuxLED du bas du cadre : servent a visualiser l'activité sur la voie série (une pour I'émission et l'autre pour la
réception). Le téléchargement du programme dans le micro-contrleur se faisant par cette voie, on peut les voir clignoter
lors du chargement.

La connectique

La carte Arduino ne possédant pas de composants qui peuvent étre utilisés pour un programme, mis a par la LED connectée a la
broche 13 du microcontréleur, il est nécessaire de les rajouter. Mais pour ce faire, il faut les connecter a la carte. Clest la
qu'intervient la connectique de la carte (en 5a et Sh).

Par exemple, on veut connecter une LED sur une sortie du microcontréleur. Il suffit juste le la connecter, avec une résistance en
série, a la carte, sur les fiches de connections de la carte.

Cette connectique est importante et a un brochage qu'il faudra respecter. Nous le verrons quand nous apprendrons a faire notre
premier programme. C'est avec cette connectique que la carte est "extensible", car l'on peut y brancher tous types de montages

et modules ! Par exemple, la carte Arduino Uno peut étre étendue avec des shields, comme le « Shield Ethernet » qui permet de

connecter cette derniére a internet.

Figure 2 : Une carte Arduino étendue avec n Ethernet Shield

Afin d’utiliser la carte, il faut l'installer. Normalement, les drivers sont déja installés sous GNU/Linux. Sous mac, il suffit de double
cliquer sur le fichier.mkpg inclus dans le téléchargement de l'application Arduino et I'installation des drivers s’exécute de fagon
automatique.

Lorsque vous connectez la carte a votre ordinateur sur le port USB, un petit message en bas de I'écran apparait. Théoriquement,
la carte que vous utilisez doit s'installer toute seule. Cependant, si vous étes sous Win 7 comme moi, il se peut que ca ne marche
pas du premier coup. Dans ce cas, laisser la carte branchée puis ensuite allez dans le panneau de configuration. Une fois 1a,
cliquezsur "systéme" puis dans le panneau de gauche sélectionnez "gestionnaire de périphériques". Une fois ce menu ouvert,
vous devriez voir un composant avec un panneau "attention" jaune. Faites un clic droit sur le composant et cliquez sur "Mettre
ajour les pilotes". Dans le nouveau menu, sélectionnez l'option "Rechercher le pilote moi-méme". Enfin, il ne vous reste plus qu'a
aller sélectionner le bon dossier contenant le driver. Il se trouve dans le dossier d'Arduino que vous avez du décompresser un
peu plus tot et se nomme "drivers" (attention, ne descendez pas jusqu'au dossier "FTDI"). Par exemple, pour moi le chemin sera:
[le-chemin-jusqu'au-dossier]\arduino-0022\arduino-0022\drivers

M Il semblerait qu'il y est des problémes en utilisant la version francaise d'Arduino (les drivers sont absents du dossier).
Sic'est le cas, il vous faudra télécharger la version originale (anglaise) pour pouvoir installer les drivers.

Apres l'installation et une suite de clignotement sur les micro-LED de la carte, celle-ci devrait étre fonctionnelle; une petite LED
verte témoigne de la bonne alimentation de la carte :

www.siteduzero.com

http://img4.hostingpics.net/thumbs/mini_743035Image2.png
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 42/326

i S
H._.‘um‘— T T

Figure 3 : carte connectée et alimentée

Avant de commencer a programmer la téte baissée, il faut, avant toutes choses, tester le bon fonctionnement de la carte. Car ce
serait idiot de programmer la carte et chercher les erreurs dans le programme alors que le probléme vient de la carte ! ><Nous
allons tester notre matériel en chargeant un programme qui fonctionne dans la carte.

9 Mais, on n'en a pas encore fait de programmes ?

Tout juste ! Mais le logiciel Arduino contient des exemples de programmes. Et bien ce sont ces exemples que nous allons utiliser
pour tester la carte.

1ére étape : ouvrir un programme

Nous allons choisir un exemple tout simple qui consiste a faire clignoter une LED. Son nomest Blink et vous le trouverez dans la
catégorie Basics :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

43/326

28 sketch_apr12a | Arduino 0022
Edit Sketch Tools Help

= Chrl+M
Cpen... ChrHO
Sketchbook,

Close ChrlHi
Save Chrl+5

Upload ko [0 Board Chrl+1

Print Chrl[+P

ik Chrl4+0

Save As.., Cerl+HMai+3 . Comrmunication

Page Setup Chrl+Maj+P

AnalogReadserial
2. Digital BareMinirnurn

3.analog

DigitalReadSerial
Fade

5. Conkral
6.5ensars

7. Display

v v v v wvw w vl

8.5krings

Preferences Ckrl+Caomma arduinoISP

ArduinoTestSuike k
EEPR.OM ¢
Ethernet [
Firmaka »
LiquidCrystal 3
Matkrix ¥
=] »
]
]
k
b

Servo

SFI
Stepper
Wire

Figure 4 : Ouvrir le programme Blink

Une fois que vous avez cliqué sur Blink, une nouvelle fenétre va apparaitre. Elle va contenir le programme Blink. Vous pouvez
fermer l'ancienne fenétre qui va ne nous servir plus a rien.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

44/326

=3 Blink | Arduino 0022
File Edit Sketch Tools Help

Blink
Turns on at LED on for one second, then off for one second,

This example code is in the public domain.

iy

void setup ()

pinMode (13, OUTPUT):

void loop () {

repeatedly.

4 initialize the digital pin as an output.
A4 Pin 13 has an LED comnnected on most Arduino boards:

digitalWlrite (13, HIGH): A4 set the LED on

delay({l000) ; A4 wait for a second
digitalWrite (13, LOW): £ set the LED off
delay(1000) ; A4 wait for a second

2e étape

Avant d'envoyer le programme Blink vers la carte, il faut dire au logiciel quel est le nomde la carte et sur quel port elle est

branchée.

Figure 5 : Contenu du programme Blink

Choisir la carte que l'on va programmer.
Ce n'est pas tres compliqué, le nomde votre carte est indiqué sur elle. Pour nous, il s'agit de la carte "Uno". Allezdans le menu

"Tools" ("outils" en frangais) puis dans "Board" ("carte" en francais). Vérifiez que c'est bien le nom " Arduin Uno" qui est

coché. Sice n'est pas le cas, cochez-le.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 45/326

=& Blink | Arduino 0022
File Edit Sketch B

E Auko Format Chrl+T
Archive Skekch
Fix Encoding & Reload
Setial Monitor Ckrl+Maj+r

BElink Eoard & Arduino Uno

Turns on an Serial Port Arduing Duernilanove or Mano wf ATrmega3z2s

repeatedly. Arduing Diecimila, Duemilanowve, or Mano w) ATmegalé&s
Burn Bootloader b

Arduino Mega 2560
Arduino Mega (4Tmegal 2500

Arduino Mini

This example code iz in the public domaiy
¥

waid SEt'I.IPI::I { Arduing Fio
/4 initialize the digital pin as an outp] Arduino BT wf ATmega3zs
J4 Pin 13 hazs an LED connected on most 4j Arduino BT w) ATmegal 65

pinMode (13, OQUTPUT): LilvPad &rduino w) ATmega3zs
¥ LilvPad &Arduino w) ATmegalas
Arduino Pro or Pro Mini (5%, 16 MHz) w/ ATmega3zs
Arduino Prooor Pro Mini (5Y, 16 MHz) w/ ATmegalss
Arduino Pro or Pro Mini (3.3%, & MHz) w) ATmega3za

woid loop () |
digitalWrite (13, HIGH): 44 zet the LED

delaw(1000) A omait for a s
digitallirite(13, LOW): ¢/ set the LED Arduino Prooor Pro Mini (3.3Y, & MHz) w) ATmegalsd
delay (1000 ; A4 wait for a Arduino NG or older w) ATmegalad

1 arduing NG or older w) ATmegad

| M

b

Figure 6 : Choix de la carte Arduino

Choisissez le port de connexion de la carte.
Allez dans le menu Tools, puis Serial port. La, vous choisissez le port COMX, X étant le numéro du port qui est affiché. Ne
choisissez pas COMI car il n'est quasiment jamais connecté a la carte. Dans mon cas, il s'agit de COMS :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 46/326

@ Blink | Arduino 0022 M=E3
File Edit Sketch BfafEf

&uko Format Chrl+T
archive Sketch
Fix Encoding & Reload

CEeH Mg+

Serial Monikor

i i
Elink
Turns on an Copml e second,
repeatedly. W COMS
Burn Bootloader b

Thiz examnple code iz in the public domain.
A

volid setup ()
A4 dnitialize the digital pin as an output.
A4 Pin 13 has an LED connected on most Arduing boards:
pinMode (13, OUTPIT)

void loop () §
digitalWlrite(l3, HIGH): A4 set the LED on

delaw(1000): Jf wait for a second
digitalWrice (13, LOW): /4 set the LED off
delayil000) ; J4 wait for a second

Figure 7 : Choix du port de connexion de la carte

Pour trouver le port de connexion de la carte, vous pouvezaller dans le gestionnaire de périphérique quise trouve dans le
panneau de configuration . Regardez a la ligne Ports (COM et LPT) et 1a, vous devriez avoir Arduino Uno (COMX). Aller, une
image pour le plaisir :

pEET TWaE e —

Figure 8 : Recherche du port de communication de la carte (Merci & sye pour cette image)

Derniere étape

Trés bien. Maintenant, il va falloir envoyer le programme dans la carte. Pour ce faire, il suffit de cliquer sur le bouton Upload (ou
"Télécharger" en Frangais), en jaune-orangé sur la photo :

www.siteduzero.com

http://uploads.siteduzero.com/files/323001_324000/323712.png
http://www.siteduzero.com/membres-294-16749.html
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 47/326

=& Blink | Arduino 00232
File Edit sketch Tools Help

Elink
Turns on an LED on for one second, then off for one second,
repeatedly.

Thiz example code i= in the public domain.
s

volid setup () |
A4 initialize the digital pin as an output.
4 Pin 13 has an LED connected on most Arduing boards:
pinMode (13, OUTPUT)

volid loop () §
digitalWrite (13, HIGH): A4 set the LED on

delaw(1000) Jfowait for a second
digitalWrice (13, LOW); 44 set the LED off
delay(l000) ; A4 wait for a second

Figure 9 : Envoi du programme Blink

En bas dans l'image, vous voyezle texte : "Uploading to I/O Board...", cela signifie que le logiciel est en train d'envoyer le
programme dans la carte. Une fois qu'il a fini, il affiche un autre message :

www.siteduzero.com

http://www.siteduzero.com

Partie 1

: [Théorie] Découverte de I'Arduino

48/326

Blink
Turns on an LED on for one second, then off for one second,

repeatedly.

This example code is in the public domain.
i

volid setup() |
Ff initialize the digital pinh az an output.
A4 Pin 13 has an LED comnected on most Arduino boards:
pinMode (13, OUTPUT) :

void loop () {
digitalWrite (13, HIGH): £4 set the LED on

delay ({1000 ; A4 wait for a second
digitalWrite (13, LOW);: £f get the LED off
delay(l000) ; A4 wait for a second

Binary = ch sime: (of a 30720 byt

Figure 10 : fin de l'upload

Le message afficher : "Done uploading" signale que le programme a bien été chargé dans la carte. Si votre matériel fonctionne,
vous devriez avoir une LED sur la carte qui clignote :

A

Sivous n'obtenez pas ce message mais plutot un truc en rouge, pas d'inquiétude, le matériel n'est pas forcément

défectueux!

En effet, plusieurs erreurs sont possibles:

- I'DE recompile avant d'envoyer le code, vérifier la présence d'erreur
- La voie série est peut-étre mal choisi, vérifier les branchements et le choixde la voie série

- I'IDE est codé en JAVA, il peut-Etre capricieux et bugger de temps en temps (surtout avec la voie série...) : réessayez

l'envoi!

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 49/326

MADE
IN ITALY

Figure 11 : LED sur la carte qui clignote
Toutes ces étapes, vous devrez les faire avant d’utiliser la carte pour vérifier son bon fonctionnement. C’est trés important !

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 50/326

Le langage Arduino (1/2)

Pour pouvoir programmer notre carte, il nous faut trois choses :

e Un ordinateur
e Une carte Arduino
e FEt connaitre le langage Arduino

C’est ce dernier point qu’il nous faut acquérir. Le but méme de ce chapitre est de vous apprendre a programmer avec le langage
Arduino. Cependant, ce n’est qu’un support de cours que vous pourrez parcourir lorsque vous devrez programmer tout seul

votre carte. En effet, c’est en manipulant que I’on apprend, ce qui implique que votre apprentissage en programmation sera plus
conséquent dans les prochains chapitres que dans ce cours méme.

Je précise un petit aléa : le langage Arduino n'ayant pas la coloration de sa syntaxe dans le zCode, je le mettrai en tant
que code C car leur syntaxe est trés proche :

Code : C

//voici du code Arduino coloré grdce a la balise "code : C"
& du zCode

void setup ()

{

/..

}

vous sentezpas obligé de lire les deux chapitre sur le langage Arduino. Bien qu'il y ait des points quelques peu

i Le langage Arduino est trés proche du C et du C++. Pour ceuxdont la connaissance de ces langages est fondée, ne
important.

La syntaxe d'un langage de programmation est l'ensemble des reégles d'écritures liées a ce langage. On va donc voir dans ce sous-
chapitre les regles quirégissent l'écriture du langage Arduino.

Avec Arduino, nous devons utiliser un code minimal lorsque I'on crée un programme. Ce code permet de diviser le programme
que nous allons créer en deux grosses parties.

Code : C
void setup () //fonction d'initialisation de la carte
{
//contenu de 1'initialisation
}
void loop () //fonction principale, elle se répete

(s’exécute) a 1'infini
{

//contenu de votre programme

}

Vous avez donc devant vous le code minimal qu'il faut insérer dans votre programme. Mais que peut-il bien signifier pour
quelqu'un quin'a jamais programmé ?

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 51/326

La fonction

Dans ce code se trouvent deux fonctions. Les fonctions sont en fait des portions de code.

Code : C

void setup () //fonction d'initialisation de la carte

{
//contenu de 1'initialisation
//on écrit le code a 1'intérieur

Cette fonction setup() est appelée une seule fois lorsque le programme commence. C'est pourquoi c'est dans cette fonction que
l'on va écrire le code quin'a besoin d'étre exécuté une seule fois. On appelle cette fonction : "fonction d'initialisation". On y
retrouvera la mise en place des différentes sorties et quelques autres réglages. C'est un peu le check-up de démarrage. Imaginez
un pilote d'avion dans sa cabine qui fait l'inventaire @

- patte 2 en sortie, état haut ?
-0OK
-timer 3 a 15 millisecondes ?
-0OK

Une fois que l'on a initialisé le programme il faut ensuite créer son "cceur", autrement dit le programme en lui méme.

Code : C

void loop () //fonction principale, elle se répete
(s’exécute) a 1'infini
{

//contenu de votre programme

}

C'est donc dans cette fonction loop() ou I'on va écrire le contenu du programme. Il faut savoir que cette fonction est appelée en
permanence, c'est-a-dire qu'elle est exécutée une fois, puis lorsque son exécution est terminée, on la ré-exécute et encore et
encore. On parle de boucle infinie.

A titre informatif, on n'est pas obligé d'écrire quelque chose dans ces deux fonctions. En revanche, il est obligatoire de
les écrire, méme si elles ne contiennent aucun code !

Les instructions

@ Dans ces fonctions, on écrit quoi ?

Clest justement I'objet de ce paragraphe.

Dans votre liste pour le diner de ce soir, vous écrivez les tiches importantes qui vous attendent. Ce sont des instructions. Les
instructions sont des lignes de code qui disent au programme : "fait ceci, fait cela, ..." Cest tout béte mais trés puissant car c'est
ce qui va orchestrer notre programme.

Les points virgules

Les points virgules terminent les instructions. Si par exemple je dis dans mon programme : "appelle la fonction

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 52/326

couperDuSaucisson" je dois mettre un point virgule aprés l'appel de cette fonction.

conséquent le code ne marche pas et la recherche de l'erreur peut nous prendre un temps conséquent ! Donc faites bien

@ Les points virgules (;) sont synonymes d'erreurs car il arrive trés souvent de les oublier a la fin des instructions. Par
attention.

Les accolades
Les accolades sont les "conteneurs" du code du programme. Elles sont propres aux fonctions, aux conditions et auxboucles.
Les instructions du programme sont écrites a l'intérieur de ces accolades. Parfois elles ne sont pas obligatoires dans les
conditions (nous allons voir plus bas ce que c'est), mais je recommande de les mettre tout le temps ! Cela rendra plus lisible
votre programme.

Les commentaires

Pour finir, on va voir ce qu'est un commentaire. J'en ai déja mis dans les exemples de codes. Ce sont des lignes de codes qui
seront ignorées par le programme. Elles ne servent en rien lors de I'exécution du programme.

@ Mais alors c'est inutile ?

Non car cela va nous permettre a nous et aux programmeurs qui lirons votre code (s'ily en a) de savoir ce que signifie la ligne de
code que vous avez écrite. Cest trés important de mettre des commentaires et cela permet aussi de reprendre un programme
laissé dans l'oubli plus facilement !

Sipar exemple vous connaissez mal une instruction que vous avez écrite dans votre programme, vous mettez une ligne de
commentaire pour vous rappeler la prochaine fois que vous lirez votre programme ce que la ligne signifie.

Ligne unique de commentaire :

Code : C

//cette ligne est un commentaire sur UNE SEULE ligne

Ligne ou paragraphe sur plusieurs lignes :
Code : C

/*cette ligne est un commentaire, sur PLUSIEURS lignes
qui sera ignoré par le programme, mais pas par celui qui 1i le code

g) =/

Les accents
Il est formellement interdit de mettre des accents en programmation. Sauf dans les commentaires.

Nous l'avons vu, dans un microcontréleur, il y a plusieurs types de mémoire. Nous nous occuperons seulement de la mémoire
"vive" (RAM) et de la mémoire "morte" (EEPROM).

Je vais vous poser un probleme. Imaginons que vous avez connecté un bouton poussoir sur une broche de votre carte Arduino.
Comment allez-vous stocker I'état du bouton (appuyé¢ ou éteint) ?

Une variable, qu'est ce que c'est ?

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

53/326

Une variable est un nombre. Ce nombre est stocké dans un espace de la mémoire vive (RAM) du microcontrdleur. La maniére qui

permet de les stocker est semblable a celle utilisée pour ranger des chaussures : dans un casier numéroté.

Chaussures rangées dans des cases
numérotées

4

5

6

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

@ Une variable est un nombre, c'est tout ?

Ce nombre a la particularité de changer de valeur. Etrange n'est-ce pas ? Et bien pas tant que ¢a, car une variable est en fait le
conteneur du nombre en question. Et ce conteneur va étre stocké dans une case de la mémoire. Si on matérialise cette explication

parun schéma, cela donnerait :

e le symbole "=>" signifiant : "est contenu dans..."

Le nom d'une variable

nombre => variable => mémoire

Le nomde variable accepte quasiment tous les caractéres sauf':

e _(le point)
e (lavirgule)
e ¢a,c.¢ (les accents)

Bon je vais pas tous les donner, il n'accepte que l'alphabet alphanumérique ([a-z], [A-Z], [0-9]) et _ (underscore)

Définir une variable

Sion donne un nombre a notre programme, il ne sait pas sic'est une variable ou pas. Il faut le lui indiquer. Pour cela, on donne un

type aux variables. Oui, car il existe plusieurs types de variables ! Par exemple la variable "X" vaut 4 :

Code : C

Et bien ce code ne fonctionnerait pas car il ne suffit pas ! En effet, il existe une multitude de nombres : les nombres entiers, les

nombres décimaux, ... C'est pour cela qu'il faut assigner une variable a un type.

Voila les types de variables les plus répandus

Type Quel nombre il stocke ? Valeurs maximales du nombre stocké Nombre sur X bits

Nombre d'octets

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 54/326

int entier -32 768 a +32 767 16 bits 2 octets
long | entier -2 147 483 648 a +2 147 483 647 32 bits 4 octets
char | entier -128 a +127 8 bits 1 octets
float | décimale 34x103Fa+3.4x1(03E 32 bits 4 octets
double | décimale 34x1(P3%a+3.4x103"8 32 bits 4 octets

Par exemple, sinotre variable "X" ne prend que des valeurs décimales, on utilisera les types int, long, ou char. Si maintenant la
variable "X' ne dépasse pas la valeur 64 ou 87, alors on utilisera le type char.

Code : C

char x = 0;

Sien revanche x= 260, alors on utilisera le type supérieur (qui accepte une plus grande quantité de nombre) a char,
autrement dit int ou long.

e Mais t'es pas malin, pour éviter les dépassements de valeur ont met tout dans des double ou long !

Oui, mais NON. Un microcontrdleur, ce n'est pas un ordinateur 2GHz multicore, 4Go de RAM ! Ici on parle d'un systéme qui
fonctionne avec un CPU a 16MHz (soit 0,016 GHz) et 2 Ko de SRAM pour la mémoire vive. Donc deuxraisons font qu'il faut
choisir ses variables de maniére judicieuse :

e -LaRAM n'est pas extensible, quand ily en a plus, y en a plus !
e -le processeur est de type 8 bits (sur Arduino UNO), donc il est optimisé pour faire des traitements sur des variables de
taille 8 bits, un traitement sur une variable 32 bits prendra donc (beaucoup) plus de temps !

Sia présent notre variable "X" ne prend jamais une valeur négative (-20, -78, ...), alors on utilisera un type non-signé. C'est a dire,
dans notre cas, un char dont la valeur n'est plus de -128 a +127, mais de 0 a 255.

Voici le tableau des types non signés, on repére ces types par le mot unsigned (de 'anglais : non-signé) qui les précéde :

Type Quel nombre il stocke ? Valeurs maximales du nombre stocké Nombre sur X bits Nombre d'octets
unsigned char | entier non négatif 0a255 8 bits 1 octets
unsignedint | entier non négatif 0a 65535 16 bits 2 octets
unsigned long | entier non négatif 024294967295 32 bits 4 octets

Une des particularités du langage Arduino est qu'il accepte un nombre plus important de types de variables. Je vous les liste
dans ce tableau :

Type Quel nombre il stocke ? Valeurs maximales du nombre stocké Nombre sur X bits Nombre d'octets

byte entier non négatif 0a?255 8 bits 1 octets
word entier non négatif 0a 65535 16 bits 2 octets
boolean | entier non négatif 0al 1 bits 1 octets

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 55/326

O Pour votre information, vous pouvezretrouver ces tableaux sur cette page.

Les variables booléennes

Les variables booléennes sont des variables quine peuvent prendre que deuxvaleurs : ou VRAI ou FAUX. Elles sont utilisées
notamment dans les boucles et les conditions. Nous verrons pourquoi.

Une variable booléenne peut étre définie de plusieurs maniéres :

Code : C
boolean variable = FALSE; //variable est fausse car elle vaut
FALSE, du terme anglais "faux"
boolean variable = TRUE; //variable est vraie car elle vaut TRUE,

du terme anglais "vrai"

Quand une variable vaut "0", on peut considérer cette variable comme une variable booléenne, elle est donc fausse. En

revanche, lorsqu'elle vaut "1" ou n'importe quelle valeurs différente de zéro, on peut aussila considérer comme une variable
booléenne, elle est donc vraie. Wila un exemple :

Code : C
int variable = 0; //variable est fausse car elle vaut 0
int variable = 1; //variable est vraile car elle vaut 1
int variable = 42; //variable est vrale car sa valeur est

différente de 0

Le langage Arduino accepte aussiune troisieme forme d'écriture (qui lui sert pour utiliser les broches de sorties du
microcontrdleur) :

Code : C
int variable = LOW; //variable est a 1'état logique bas (=
traduction de "low'"), donc 0
int variable = HIGH; //variable est a 1'état logique haut (=

traduction de "high"), donc 1

Nous nous servirons de cette troisiéme écriture pour allumer et éteindre des lumiéres...

On va voir a présent les opérations quisont possibles avec le langage Arduino (addition, multiplication, ...). Je vous vois tout de
suite dire : "Mais pourquoi on fait ¢a, on l'a fait en primaire ! @ " Et bien parce que c'est quelque chose d'essentiel, car on

pourra ensuite faire des opérations avec des variables. Vous verrez, vous changerez d'avis aprés avoir lu la suite ! @
L'addition

Vous savez ce que c'est, pas besoin d'explications. Voyons comment on fait cette opération avec le langage Arduino. Prenons la
méme variable que tout a I'heure :

Code : C

www.siteduzero.com

http://arduino.cc/fr/Main/SyntheseTypesDonnees
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

56/326

int x = 0; //définition de la variable x

x = 12 + 3; //on change la valeur de x par une opération simple
// x vaut maintenant 12 + 3 = 15

Faisons maintenant une addition de variables :

Code : C

int x = 38; //définition de la variable x et assignation a la
valeur 38

int y = 10;

int z = 0;

//faisons une addition avec un nombre cholisi au hasard

Z = X + y; // on a donc z = 38 + 10 = 48

La soustraction

On peut reprendre les exemples précédents, en faisant une soustraction :

Code : C
int x = 0; //définition de la variable x
x = 12 - 3; //on change la valeur de x par une opération simple

// x vaut maintenant 12 - 3 = 9

Soustraction de variables :

Code : C

int x = 38; //définition de la variable x et assignation a la
valeur 38

int y = 10;

int z = 0;

zZ = X - VY; // on a donc z = 38 - 10 = 28

La multiplication

Code : C
int x = 0;
int y = 10;
int z = 0;

x = 12 * 3; // x vaut maintenant 12 * 3 = 36
zZ = X * y; // on a donc z = 36 * 10 = 360
// on peut aussi multiplier (ou toute autre opération) un nombre et

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

57/326

une variable

z =2z * (1 / 10) //soit z = 360 * 0.1 = 36

La division

Code : C

int x = 0
int y =1

0;
double z =

0;
x =12 / 3; // x vaut maintenant 12 / 3 = 4

z =x / y; // on a donc z = 4 / 10 = 0.4

Le modulo
Apres cette bréve explication sur les opérations de base, passons a quelque chose de plus sérieux.

Le modulo est une opération de base, certes moins connue que les autres. Cette opération permet d'obtenir le reste d'une
division.

Code : C

18 $ 6 // le reste de 1'opération est 0, car il y a 3*6 dans 18
donc 18 - 18 = 0
18 $ 5 // le reste de 1'opération est 3, car il y a 3*5 dans 18
donc 18 - 15 = 3

Le modulo est utilisé grace au symbole %. C'est tout ce qu'il faut retenir.

Autre exemple :

Code : C
int x = 24;
int y = 6;
int z = 0;
Z =X % ¥; // on a donc z =24 % 6 = 0 (car 6 * 4 = 24)

Voyons un peu d'autres opérations qui facilitent parfois I'écriture du code.

L'incrémentation

Derriére ce nom barbare se cache une simple opération d'addition.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 58/326

Code : C

var = 0;
var++; //c'est cette ligne de code qui nous intéresse

"vartt;" revient a écrire : "var=var + 1;"

En fait, on ajoute le chiffre 1 a la valeur de var. Et sion répéte le code un certain nombre de fois, par exemple 30, et bien on aura
var =30.

La décrémentation
Clest l'inverse de l'incrémentation. Autrement dit, on enléve le chiffre 1 a la valeur de var.

Code : C

var = 30;
var--; //décrémentation de var

Les opérations composées

Parfois il devient assez lassant de réécrire les mémes chose et l'on sait que les programmeurs sont des gros fainéants ! @) Il

existe des raccourcis lorsque l'on veut effectuer une opération sur une méme variable :

Code : C

X =y // correspond & x = x + y;
X —=y; // correspond a x = X - y;
X *=y; // correspond & x = x * y;
x /= y; // correspond & x = x / y;

Avec un exemple, cela donnerait :

Code : C

int var = 10;

//opération 1
var = var + 6;
var += 6; //var = 16

//opération 2
var = var - 6;

var -= 6; //var = 4

//opération 3

var = var * 6;
var *= 6; //var = 60
//opération 4
var = var / 5;
var /= 5; //var = 2

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 59/326

Un jour, pour le projet du BAC, je devais (ou plutdt "je voulais") améliorer un code qui servait a programmer un module d'une
centrale de gestion domestique. Mon but était d'afficher un choix a l'utilisateur sur un écran. Pour ce faire, il fallait que je réalise
une bascule programmée (c'est comme ¢a que je la nomme maintenant). Et aprés maintes recherches et tests, j'ai réussia trouver
! Bt il s'avére que cette "opération", sil'on peut ’appeler ainsi, est trés utile dans certains cas. Nous l'utiliserons notamment
lorsque 'on voudra faire clignoter une lumiere.

Sans plus attendre, voila cette astuce :

Code : C

boolean x = 0; //on définit une variable x quil ne peut prendre que
la valeur 0 ou 1 (vraie ou fausse)

x =1 - x; //c'est la toute 1'astuce du programme !

Analysons cette instruction.
A chaque exécution du programme (oui, j'ai omis de vous le dire, il se répéte jusqu'a l'infini), la variable x va changer de valeur :
o 1% temps :x=1-xs0itx=1-0doncx=1

e 2%temps :x=1 - xor xvaut maintenant 1 donc x=1-1soit x=0
e 3%temps :xvaut 0 donc x=1-0soitx=1

Ce code se répéte donc et a chaque répétition, la variable xchange de valeur et passede 0a 1,de 1 2 0,de 0a 1, etc. Il agit bien
comme une bascule qui change la valeur d'une variable booléenne.

En mode console cela donnerait quelque chose du genre (n'essayez pas cela ne marchera pas, c'est un exemple) :

Code : Console

XX X X X
I
or or o

Mais il existe d'autres moyens d'arriver au méme résultat.

Par exemple, en utilisant I'opérateur "' qui signifie "not" ("non").

Ainsi, avec le code suivant on aura le méme fonctionnement :
Code : C

Puisqu'a chaque passage xdevient "pas X" donc sixvaut 1 son contraire sera 0 et s'il vaut 0, il deviendra 1.

Qu'est-ce qu'une condition

Clest un choix que l'on fait entre plusieurs propositions. En informatique, les conditions servent a tester des variables.
Par exemple :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 60/326

Vous faites une recherche sur un site spécialisé pour acheter une nouvelle voiture. Vous imposez le prix de la voiture qui doit
étre inferieur a 5000€ (c'est un petit budget @). Le programme qui va gérer ¢a va faire appel a un test conditionnel . Il va

éliminer tous les résultats de la recherche dont le prix est supérieur a 5000€.

Quelques symboles

Pour tester des variables, il faut connaitre quelques symboles. Je vous ai fait un joli tableau pour que vous vous repériez bien :

Symbole A quoi il sert Signification

= Ce symbole, composé de deux égales, permet de tester '€galité entre deux variables | ... est égale a ...

< Celui-ci teste l'infériorité d'une variable par rapport a une autre ...est inférieur a...

> La c'est la supériorité d'une variable par rapport a une autre ...est supérieur a...

<= teste l'infériorité ou l'égalité d'une variable par rapport a une autre ...est inférieur ou égale a...
>= teste la supériorité ou I'égalité d'une variable par rapport a une autre ...est supérieur ou égal a...
= teste la différence entre deux variables ...est différent de...

"Et sion s'occupait des conditions ? Ou bien sinon on va tranquillement aller boire un bon café ?"

Comment décortiquer cette phrase ? Mmm... Ha! Je sais !

Cette phrase implique un choix: le premier choixest de s'occuper des conditions. Si l'interlocuteur dit oui, alors il s'occupe des
conditions. Mais s'il dit non, alors il va boire un bon café. Il a donc l'obligation d'effectuer une action sur les deuxproposées.

En informatique, on parle de condition. "sila condition est vraie", on fait une action. En revanche "sila condition est fausse", on
exécute une autre action.

La premiére condition que nous verrons est la condition if...else. Voyons un peu le fonctionnement.

if

On veut tester la valeur d'une variable. Prenons le méme exemple que tout a I'heure. Je veuxtester si la voiture est inférieure a
5000€.

Code : C

int prix voiture = 4800; //variable : prix de la voiture définit a
4800€

D'abord on définit la variable "prix_voiture". Sa valeur est de 4800€. Ensuite, on doit tester cette valeur. Pour tester une
condition, on emploie le terme if (de I'anglais "si"). Ce terme doit étre suivi de parenthéses dans lesquelles se trouveront les
variables a tester. Donc entre ces parenthéses, nous devons tester la variable prix_voiture afin de savoir si elle est inférieure a
5000€.

Code : C

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 61/326

if (prix voiture < 5000)
{

//la condition est vraie, donc j'achete la voiture

}

On peut lire cette ligne de code comme ceci : "si la variable prix_voiture est inférieure a 5000, on exécute le code quise trouve
entre les accolades.

& Les instructions qui sont entre les accolades ne seront exécutées que sila condition testée est vraie !

Le "schéma" a suivre pour tester une condition est donc le suivant :

Code : C

if (/* contenu de la condition & tester */)

{

//instructions a exécuter si la condition est vraie

}

else

On a pour l'instant testé que si la condition est vraie. Maintenant, nous allons voir comment faire pour que d'autres instructions
soient exécutées sila condition est fausse.

Le terme else de l'anglais "sinon" implique notre deuxiéme choixsi la condition est fausse.
Par exemple, si le prix de la voiture est inférieur a 5000€, alors je l'achete. Sinon, je ne l'achete pas.
Pour traduire cette phrase en ligne de code, c'est plus simple qu'avec un if, il n'y a pas de parenthéses a remplir :

Code : C

int prix voiture = 5500;

if (prix voiture < 5000)
{

//la condition est vraie, donc j'achete la voiture

}

else

{
//la condition est fausse, donc je n'achete pas la voiture

}

. Le else est généralement utilisé pour les conditions dites de défaut. C'est lui qui a le pouvoir sur toutes les conditions,
c'est-a-dire que siaucune condition n'est vraie, on exécute les instructions qu'il contient.

Le else n'est pas obligatoire, on peut trés bien mettre plusieurs if a la suite.

Le "schéma" de principe a retenir est le suivant :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 62/326

Code : C

else // si toutes les conditions précédentes sont fausses...
{
//...on exécute les instructions entre ces accolades

}

else if

@ A ce que je vois, on a pas trop le choix: soit la condition est vraie, soit elle est fausse. Il n'y a pas d'autres possibilités ?

Bien sur que l'on peut tester d'autres conditions ! Pour cela, on emploie le terme else if qui signifie "sinon si..."

Par exemple, S le prix de la voiture est inférieur a 5000€ je l'achéte; SINON Sl elle est égale a 5500€ mais qu'elle a I'option
GPS en plus, alors je l'achete ; SINON je ne l'achéte pas.

Le sinon sis’emploie comme le if :

Code : C

int prix voiture = 5500;

if (prix voiture < 5000)
{
//la condition est vraie, donc j'achete la voiture

}

else if (prix voiture == 5500)
{
//la condition est vraie, donc j'achete la voiture

}

else
{
//la condition est fausse, donc je n'achete pas la voiture

}

A retenir donc, si la premiére condition est fausse, on teste la deuxiéme, sila deuxiéme est fausse, on teste la troisiéme, etc.
"Schéma" de principe du else, idemau if :

Code : C

else if(/* test de la condition */) //si elle est vraie...
{

//...on exécute les instructions entre ces accolades

}

& Le "else if" ne peut pas étre utilisée toute seule, il faut obligatoirement qu'il y ait un "if" avant !

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 63/326

Et sije vous posais un autre probléme ? Comment faire pour savoir sila voiture est inférieure a S000€ ET si elle est grise ? @

@ Clest vrai ¢a, sije veuxque la voiture soit grise en plus d'étre inférieure a 5000€, comment je fais ?

Il existe des opérateurs qui vont nous permettre de tester cette condition ! Voyons quels sont ses opérateurs puis testons-les !

Opérateur Signification

&& .. ET ...

I ..0U..

! NON

ET

Reprenons ce que nous avons testé dans le else if : SIla voiture vaut 5500€ ET qu'elle a l'option GPS en plus, ALORS je
l'achete.

On va utiliser un if et un opérateur logique quisera le £7 :
Code : C
int prix voiture = 5500;
int option GPS = TRUE;
if (prix voiture == 5500 && option GPS) /*1'opérateur && lie les

deux conditions qui doivent étre
vraies ensemble pour que la condition soit remplie*/

{

//j'achéte la voiture si la condition précédente est vraie

}

ou

On peut reprendre la condition précédente et la premiére en les assemblant pour rendre le code beaucoup moins long.
@ Et oui, les programmeurs sont des flemmards !@

Rappelons quelles sont ces conditions :

Code : C

int prix voiture = 5500;
int option GPS = TRUE;

if (prix _voiture < 5000)
{

//la condition est vraie, donc j'achéte la voiture

}
else if (prix voiture == 5500 && option_ GPS)
{

//la condition est vraie, donc j'achéte la voiture

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino

64/326

}

else
{
//la condition est fausse,

}

donc je n'achete pas la voiture

Vous voyezbien que l'instruction dans le if et le else if est la méme. Avec un opérateur logique, qui est le OU, on peut rassembler

ces conditions :

Code : C

int prix voiture = 5500;
int option GPS = TRUE;

if ((prix _voiture < 5000) || (prix voiture == 5500 && option_ GPS))

{
//la condition est vraie,

}

else

{
//la condition est fausse,

}

donc j'achete la voiture

donc je n'achete pas la voiture

Lisons la condition testée dans le if : "SI le prixde la voiture est inférieur a S000€ OU SI le prixde la voiture est égal a 5500€ ET la
voiture a l'option GPS en plus, ALORS j'achéte la voiture".

Attention aux parenthéses qui sont a bien placer dans les conditions, ici elles n'étaient pas nécessaires, mais elles
aident a mieux lire le code.

NON

@ Moi j'aimerais tester "sila condition est fausse jachéte la voiture". Comment faire ?

Jettasunsenet [l existe un dernier opérateur logique qui se prénomme NON. Il permet en effet de tester sila condition est

fausse :

Code : C

int prix voiture = 5500;

if (! (prix voiture < 5000))
{

//la condition est vraie, donc j'achéte la voiture

}

Se lit : "SI le prixde la voiture N'EST PAS inférieur a S000€, alors j'achéte la voiture".

On s'en sert avec le caractére ! (point d'exclamation), généralement pour tester des variables booléennes. On verra dans les

boucles que ¢a peut grandement simplifier le code.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 65/326

Il existe un dernier test conditionnel que nous n'avons pas encore abordé, c'est le switch.

Voila un exemple :
Code : C

int options voiture = 0;

if (options _voiture == 0)

{
//il n'y a pas d'options dans la voiture
}
if (options _voiture == 1)
{
//la voiture a 1'option GPS
}
if (options voiture == 2)
{
//la voiture a 1'option climatisation
}
if (options voiture == 3)
{
//la voiture a 1'option vitre automatique
}
if (options_voiture == 4)
{
//la voiture a 1'option barres de toit
}
if (options_voiture == 5)
{
//la voiture a 1'option décrottage de nez
}
else
{
//retente ta chance ;-)

}

Ce code est indigérable ! C'est infame ! Grotesque ! Pas beau ! En clair, il faut trouver une solution pour changer cela. Cette
solution existe, c'est le switch.

Le switch, comme son nom l'indique, va tester la variable jusqu'a la fin des valeurs qu'on lui aura données. Voici comment cela se
présente :

Code : C

int options voiture = 0;

switch (options voiture)
{
case 0O:
//i1 n'y a pas d'options dans la voiture
break;
case 1:
//la voiture a 1'option GPS
break;
case 2:
//la voiture a 1'option climatisation
break;
case 3:
//la voiture a 1'option vitre automatique
break;
case 4:
//la voiture a 1'option barres de toit
break;

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 66/326

case 5:
//la voiture a 1'option décrottage de nez
break;
default:
//retente ta chance ;-)
break;

Sion testait ce code, en réalité cela ne fonctionnerait pas cariln'y a pas d'instruction pour afficher a 'écran, mais nous aurions
quelque chose du genre :

Code : Console

il n'y a pas d'options dans la voiture

Sioption_voiture vaut maintenant 5 :

Code : Console

la voiture a l'option décrottage de nez

exécuter toutes les instructions. Pour éviter cela, on met cette instruction break, qui vient de l'anglais "casser/arréter"

@ L'instruction break est hyper importante, car si vous ne la mettez pas, l'ordinateur, ou plutot la carte Arduino, va
pour dire a la carte Arduino qu'il faut arréter de tester les conditions car on a trouvé la valeur correspondante.

Cette condition est en fait une simplification d'un test if...else. IIn'y a pas grand-chose a dire dessus, par conséquent un exemple
suffira :

Ce code :

Code : C

int prix voiture = 5000;
int achat voiture = FALSE;

if (prix voiture == 5000) //si c'est vrai

{ achat voiture = TRUE; //on achete la voiture

;lse //sinon

{ achat voiture = FALSE; //on n'achéte pas la voiture

}

Est équivalent a celui-ci :

Code : C

int prix voiture = 5000;
int achat voiture = FALSE;

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 67/326

achat voiture= (prix voiture == 5000) ? TRUE : FALSE;

Cette ligne :

Code : C

achat voiture= (prix voiture == 5000) 2 TRUE : FALSE;

Se lit comme ceci : "Est-ce que le prixde la voiture est égal a S000€ ? SI oui, alors j'achéte la voiture SINON je n'achéte pas la
voiture"

Bon, vous n'étes pas obligé d'utiliser cette condition ternaire, c'est ¥ ratmentpeuries—grosflemmards juste pour

simplifier le code, mais pas forcément la lecture de ce dernier.
Nous n'avons pas encore fini avec le langage Arduino. Je vous invite donc a passer a la partie suivante pour poursuivre
l'apprentissage de ce langage.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 68/326

Le langage Arduino (2/2)

J'aiune question. Si je veux faire que le code que j'ai écrit se répéete, je suis obligé de le recopier autant de fois que je
veux ? Ou bien il existe une solution ?

Voila une excellente question qui introduit le chapitre que vous allez commencer a lire car c'est justement l'objet de ce chapitre.
Nous allons voir comment faire pour qu'un bout de code se répéte. Puis nous verrons, ensuite, comment organiser notre code

pour que celui-ci devienne plus lisible et facile a débugger. Enfin, nous apprendrons a utiliser les tableaux qui nous seront trés
utiles.

Voila le programme quivous attend ! @

Qu'est-ce qu'une boucle ?

En programmation, une boucle est une instruction qui permet de répéter un bout de code. Cela va nous permettre de faire se
répéter un bout de programme ou un programme entier.

Il existe deuxtypes principaux de boucles :

e Laboucle conditionnelle, qui teste une condition et qui exécute les instructions qu'elle contient tant que la condition
testée est vraie.

e Laboucle de répétition, qui exécute les instructions qu'elle contient, un nombre de fois prédéterminé.

Probléme : Je veux que le volet électrique de ma fenétre se ferme automatiquement quand la nuit tombe. Nous ne nous
occuperons pas de faire le systeme qui ferme le volet a l'arrivée de la nuit. La carte Arduino dispose d'un capteur qui indique

la position du volet (ouvert ou fermé). Ce que nous cherchons a faire : c'est créer un bout de code qui fait descendre le volet
tant qu'il n'est pas fermé .

Pour résoudre le probléme posé, il va falloir que l'on utilise une boucle.

Code : C

/* ICI, un bout de programme permet de faire les choses suivantes
__un capteur détecte la tombée de la nuit et la levée du jour

o Si c'est la nuit, alors on doit fermer le volet

o Sinon, si c'est le jour, on doit ouvrir le volet

_ le programme 1it 1'état du capteur qui indique si le volet est
ouvert ou fermé

_ enregistrement de cet état dans la variable de type String
position volet

o Si le volet est ouvert, alors : position volet = "ouvert";
o Sinon, si le volet est fermé : position volet = "ferme';

* / -

while (position volet == "ouvert")

{
//instructions qui font descendre le volet

}

Comment lire ce code ?
En anglais, le mot while signifie "tant que". Donc sion lit la ligne :

Code : C

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 69/326

while (position volet == "ouvert") {/* instructions */}

Il faut la lire : "TANT QUE la position du volet est ouvert", on boucle/répéte les instructions de la boucle (entre les accolades).

Construction d'une boucle while
Voila donc la syntaxe de cette boucle qu'il faut retenir :

Code : C

while (/* condition a tester */)
{

//les instructions entre ces accolades sont répétées tant que la
condition est vraie

}

Un exemple

Prenons un exemple simple, réalisons un compteur !

Code : C

int compteur = 0; //variable compteur qui va stocker
le nombre de fois que la boucle
//aura été exécutée

while (compteur != 5) //tant que compteur est différent de 5, on
boucle

{

compteur++; //on incrémente la variable compteur a chaque tour
de boucle

}

Sion teste ce code (dans la réalité rien ne s'affiche, c'est juste un exemple pour vous montrer), cela donne :

Code : Console

compteur = 0
compteur = 1
compteur = 2
compteur = 3
compteur = 4
compteur = 5

Donc au départ, la variable compteur vaut 0, on exécute la boucle et on incrémente compteur. Mais compteur ne vaut pour
l'instant que 1, donc on ré-exécute la boucle. Maintenant compteur vaut 2. On répéte la boucle, ... jusqu'a 5. Si compteur vaut 5,
la boucle n'est pas ré-exécutée et on continu le programme. Dans notre cas, le programme se termine.

Cette boucle est similaire a la précédente. Mais il y a une différence quia son importance ! En effet, si on préte attention a la
place la condition dans la boucle while, on s’apercoit qu'elle est testée avant de rentrer dans la boucle. Tandis que dans une

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 70/326

boucle do...while, la condition est testée seulement lorsque le programme est rentré dans la boucle :

Code : C

do
{

//les instructions entre ces accolades sont répétées tant que la
condition est vrai

}while (/* condition a tester */):

I Le mot do vient de l'anglais et se traduis par faire. Donc la boucle do...while signifie "faire les instructions, tant que la

condition testée est fausse". Tandis que dans une boucle while on pourrait dire : "tant que la condition est fausse, fais
ce quisuit".

@ Qu'est-ce que ¢a change ?

Et bien, dans une while, sila condition est vraie dés le départ, on entrera jamais dans cette boucle. A l'inverse, avec une boucle
do...while, on entre dans la boucle puis on test la condition.

Reprenons notre compteur :

Code : C

int compteur = 5; //variable compteur

5

do
{

compteur++;

//on incrémente la variable compteur a chaque tour
de boucle

}while (compteur < 5);

//tant que compteur est inférieur a 5, on
boucle

Dans ce code, on définit dés le départ la valeur de compteur a 5. Or, le programme va rentrer dans la boucle alors que la condition
est fausse. Donc la boucle est au moins exécutée une fois ! Et ce quelle que soit la véracité de la condition. En test cela donne :

Code : Console

compteur = 6

Concaténation

Une boucle est une instruction qui a été répartie sur plusieurs lignes. Mais on peut I'écrire sur une seule ligne :

Code : C

int compteur = 5; //variable compteur = 5

do{compteur++; }while (compteur < 5);

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 71/326

@ Clest pourquoi il ne faut pas oublier le point virgule a la fin (apres le while). Alors que dans une simple boucle while le
point virgule ne doit pas étre mis !

Voila une boucle bien particuli¢re. Ce qu'elle va nous permettre de faire est assez simple. Cette boucle est exécutée X fois.
Contrairement aux deux boucles précédentes, on doit lui donner trois paramétres.

Code : C
for (int compteur = 0; compteur < 5; compteur++)
{
//code a exécuter
}
Fonctionnement
Code : C
for (int compteur = 0; compteur < 5; compteur+t)

D'abord, on crée la boucle avec le terme for (signifie "pour que"). Ensuite, entre les parenthéses, on doit donner trois paramétres
quisont :

e la création et l'assignation de la variable a une valeur de départ
e suivit de la définition de la condition a tester
e suivit de l'instruction a exécuter

Le langage Arduino n’accepte pas l'absence de la ligne suivante :
Code : C

@ int compteur

On est obligé de déclarer la variable que I'on va utiliser (avec son type) dans la boucle for !

Donc, sion li cette ligne : "POUR compteur = 0 et compteur inférieur a 5, on incrémente compteur". De fagon plus concise, la
boucle est exécutée autant de fois qu'il sera nécessaire a compteur pour arriver a 5. Donc ici, le code qui se trouve a l'intérieur de
la boucle sera exécuté 5 fois.

A retenir

La structure de la boucle :

Code : C

for(/*initialisation de la variable*/ ; /*condition a laquelle la
boucle s'arréte*/ ; /*instruction a4 exécuter*/)

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 721326

La boucle infinie est tres simple a réaliser, d'autant plus qu'elle est parfois tres utile. Il suffit simplement d'utiliser une while et de
lui assigner comme condition une valeur qui ne change jamais. En l'occurrence, on met souvent le chiffre 1.

Code : C

while (1)
{
//instructions a répéter jusqu'a 1'infinie

}

On peut lire : "TANT QUE la condition est égale a 1, on exécute la boucle". Et cette condition sera toujours remplie puisque "1"
n'est pas une variable mais bien un chiffre. Egalement, il est possible de mettre tout autre chiffre entier, ou bien le booléen
"TRUE" :

Code : C

while (TRUE)
{
//instructions a répéter jusqu'a 1'infinie

}

ﬂ Cela ne fonctionnera pas avec la valeur 0. En effet, 0 signifie "condition fausse" donc la boucle s’arrétera aussitot...

a fonction loop() se comporte comme une boucle infinie, puisqu'elle se répete apres avoir fini d’exécuter ses taches.
La fonction | rt b le infi ‘ell t finid’ t tacl

Dans un programmme, les lignes sont souvent trés nombreuses. Il devient alors impératif de séparer le programme en petits bouts
afin d'améliorer la lisibilité de celui-ci, en plus d'améliorer le fonctionnement et de faciliter le débogage. Nous allons voir ensemble
ce qu'est une fonction, puis nous apprendrons a les créer et les appeler.

Qu'est-ce qu'une fonction ?

Une fonction est un "conteneur" mais différent des variables. En effet, une variable ne peut contenir qu'un nombre, tandis qu'une
fonction peut contenir un programme entier !

Par exemple ce code est une fonction :

Code : C

void setup ()
{

//instructions

}

En fait, lorsque l'on va programmer notre carte Arduino, on va écrire notre programme dans des fonctions. Pour l'instant nous
n'en connaissons que 2 : setup() et loop().

Dans l'exemple précédent, a la place du commentaire, on peut mettre des instructions (conditions, boucles, variables, ...). C'est

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 73/326

ces instructions qui vont constituer le programme en lui méme.

Pour étre plus concret, une fonction est un bout de programme qui permet de réaliser une tche bien précise. Par exemple, pour

mettre en forme un texte, on peut colorier un mot en bleu, mettre le mot en gras ou encore grossir ce MOT. A chaque fois, on a
utilisé une fonction :

e gras, pour mettre le mot en gras
e colorier, pour mettre le mot en bleu
e grossir, pour augmenter la taille du mot

En programmation, on va utiliser des fonctions. Alors ces fonctions sont "réparties dans deux grandes familles". Ce que
jlentends par 14, c'est qu'il existe des fonctions toutes prétes dans le langage Arduino et d'autres que I'on va devoir créer nous
méme. Cest ce dernier point qui va nous intéresser.

On ne peut pas écrire un programme sans mettre de fonctions a l'intérieur ! On est obligé d'utiliser la fonction sezup() et
loop() (méme sion ne met rien dedans). Sivous écrivez des instructions en dehors d'une fonction, le logiciel Arduino
refusera systématiquement de compiler votre programme. Il n'y a que les variables globales que vous pourrez déclarer
en dehors des fonctions.

@ J'ai pas trop compris a quoi¢a sert ?

L'utilité¢ d'une fonction réside dans sa capacité a simplifier le code et a le séparer en "petits bouts" que l'on assemblera ensemble
pour créer le programme final. Si vous voulez, c'est un peu comme les jeux de construction en plastique : chaque piece a son
propre mécanisme et réalise une fonction. Par exemple une roue permet de rouler ; un bloc permet de réunir plusieurs autres blocs
entre eux ; un moteur va faire avancer l'objet créé... Et bien tous ces ¢léments seront assemblés entre eux pour former un objet
(voiture, maison, ...). Tout comme, les fonctions seront assemblées entre elles pour former un programme. On aura par exemple la
fonction : "mettre au carré un nombre" ; la fonction : "additionnera +b" ; etc. Qui au final donnera le résultat souhaité.

Pour fabriquer une fonction, nous avons besoin de savoir trois choses :

e Quelest le type de la fonction que je souhaite créer ?
® Quelsera son nom ?
e Quel(s) parameétre(s) prendra-t-elle ?

Nom de la fonction

Pour commencer, nous allons, en premier lieu, choisir le nom de la fonction. Par exemple, si votre fonction doit récupérer la
température d'une piece fournie par un capteur de température : vous appellerez la fonction lireTemperaturePiece, ou bien
lire_temperature_piece, ou encore lecture_temp piece. Bon, des noms on peut lui en donner plein, mais soyez logique quant
au choixde ce demier. Ce sera plus facile pour comprendre le code que sivous l'appelez tmp (pour température @).

1 Un nomde fonction explicite garantit une lecture rapide et une compréhension aisée du code. Un lecteur doit savoir ce
que fait la fonction juste grace a son nom, sans lire le contenu !

Les types et les paramétres
Les fonctions ont pour but de découper votre programme en différentes unités logiques. Idéalement, le programme principal ne
devrait utiliser que des appels de fonctions, en faisant un minimum de traitement. Afin de pouvoir fonctionner, elles utilisent, la

plupart du temps, des "choses" en entrées et renvoient "quelque chose" en sortie. Les entrées seront appelées des paramétres
de la fonction et la sortie sera appelée valeur de retour.

4. Notez qu'une fonction ne peut renvoyer qu'un seul résultat a la fois.

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 74/326

k Notez également qu'une fonction ne renvoie pas obligatoirement un résultat. Elle n'est pas non plus obligée d'utiliser
des paramétres.

Les parametres

Les paramétres servent a nourrir votre fonction. Ils servent a donner des informations au traitement qu'elle doit effectuer.
Prenons un exemple concret.

Pour changer I'état d'une sortie du microcontrdéleur, Arduino nous propose la fonction suivante: digitalWrite(pin, value). Ainsi, la
référence nous explique que la fonction a les caractéristiques suivantes:

e - paramétre pin: le numéro de la broche a changer
e -paramétre value: I'état dans lequel mettre la broche (HIGH, (haut, +5V) ou LOW (bas, masse))
e -retour: pas de retour de résultat

Comme vous pouvez le constater, I'exemple est explicite sans lire le code de la fonction. Son nom, digitalWrite ("écriture digitale"
pour les anglophobes), signifie qu'on va changer I'état d'une broche numérique (donc pas analogique). Ses paramétres ont eux
aussides noms explicites, pin pour la broche a changer et value pour I'état a lui donner.

Lorsque vous aller créer des fonctions, c'est a vous de voir si elles ont besoin de parametres ou non. Par exemple, vous voulez
faire une fonction qui met en pause votre programme, vous pouvez faire une fonction Pause () quiprendra en paramétre une
variable de type char ou int, etc. (cela dépendra de la taille de la variable). Cette variable sera donc le parametre de notre fonction
Pause () et déterminera la durée pendant laquelle le programme sera en pause.

On obtiendra donc, par exemple, la syntaxe suivante : void Pause (char duree).

Pour résumer un peu, on a le choixde créer des fonctions vides, donc sans parametres, ou bien des fonctions "typées' qui
acceptent un ou plusieurs parametres.

Mais c'est quoica "void" ?

J'y arrive ! Souvenez vous, un peu plus haut je vous expliquais qu'une fonction pouvait retourner une valeur, la fameuse valeur
de sortie, je vais maintenant vous expliquer son fonctionnement.

On vient de voir qu'une fonction pouvait accepter des parametres. Mais ce n'est pas obligatoire. Une fonction quin'accepte pas
de paramétres est une fonction vide.

La syntaxe utilisée pour définir une fonction vide est la suivante :

Code : C

void nom de la fonction ()

{

//instructions

}

On utilise donc le type void pour dire que la fonction n'aura pas de parametres.
Une fonction de type void ne peut pas retourner de valeur. Par exemple :

Code : C

www.siteduzero.com

http://arduino.cc/en/Reference/DigitalWrite
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 75/326

void setup ()
{

}

void loop ()
{
fonction () ;

}

void fonction ()

{

int var = 24;
return var; //ne fonctionnera pas car la fonction est de type
void

}

Ce code ne fonctionnera pas, parce que la fonction fonction () est de type void. Or elle doit renvoyer une variable qui est de
type int. Ce quiest impossible !

IIn'y en a pas plus a savoir. @

L4, cela devient légerement plus intéressant. En effet, sion veut créer une fonction qui calcule le résultat d'une addition de deux
nombres (ou un calcul plus complexe), il serait bien de pouvoir renvoyer directement le résultat plutot que de le stocker dans une
variable qui a une portée globale et d’accéder a cette variable dans une autre fonction.

En clair, l'appel de la fonction nous donne directement le résultat. On peut alors faire "ce que l'on veut" avec ce résultat (le
stocker dans une variable, l'utiliser dans une fonction, lui faire subir une opération, ...)

Comment créer une fonction typée ?

En soit, cela n'a rien de compliqué, il faut simplement remplacer void par le type choisi (int, 1ong,...)

Voila un exemple :

Code : C

int maFonction ()
{

int resultat = 44; //déclaration de ma variable résultat
return resultat;

Notez que je n'ai pas mis les deux fonctions principales, a savoir setup () et 1oop (), mais elles sont obligatoires !

Lorsqu'elle sera appelée, la fonction maFonction () va tout simplement retourner la variable resultat. Wyezcet exemple :

Code : C

int calcul = 0;

void loop ()
{

calcul

10 * maFonction() ;

}

int maFonction ()

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 76/326

int resultat = 44; //déclaration de ma variable résultat
return resultat;

Dans la fonction 1oop (), on fait un calcul avec la valeur que nous retourne la fonction maFonction () . Autrement dis, le
calculest:calcul = 10 * 44; Cequinous donne : calcul =440.

Bon ce n'est qu'un exemple trés simple pour vous montrer un peu comment cela fonctionne. Plus tard, lorsque vous serez au
point, vous utiliserez certainement cette combinaison de fagon plus complexe.

"1 Comme cet exemple est trés simple, je n'ai pas inscrit la valeur retournée par la fonction maFonction () dans une
ﬂ variable, mais il est préférable de le faire. Du moins, lorsque c'est utile, ce quin'est pas le cas ici.

Clest bien gentil tout ¢a, mais maintenant vous allez voir quelque chose de bien plus intéressant. Voila un code, nous verrons ce
qu'il fait apres :

Code : C

int x = 64;
int y = 192;
void loop ()
{

maFonction(x, vy);
}
int maFonction (int paraml, int param2)
{

int somme = 0;

somme = paraml + param?2;

//somme = 64 + 192 = 255

return somme;

@ Que se passe-t-il ?

J'ai défini trois variables : somme, x et y. La fonction maFonction () est"typée" et accepte des paramétres.

Lisons le code du début :

e On déclare nos variables
e Lafonction 1oop () appelle la fonction maFonction () que l'on a créée

Clest sur ce dernier point que l'on va se pencher. En effet, on a donné a la fonction des paramétres. Ces paramétres servent a
"nourrir" la fonction. Pour faire simple, on dit a la fonction : "Voila deux paramétres, je veux que tu t'en serves pour faire le
calcul que je veux"

Ensuite arrive la signature de la fonction.

n La signature... de quoi tu parles ?

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 771326

©

La signature c'est le "titre complet" de la fonction. Grace a elle on connait le nom de la fonction, le type de la valeur retourné, et le
type des différents paramétres.

Code : C

int maFonction (int paraml, int param2)

La fonction récupére dans des variables les paramétres que l'on luia envoyés. Autrement dit, dans la variable paraml, on
retrouve la variable x. Dans la variable param?2, on retrouve la variable y.

Soit:paraml = x = 64etparam2 = y = 192,

Pour finir, on utilise ces deux variables créées "a la volée" dans la signature de la fonction pour réaliser le calcul souhaité (une
somme dans notre cas).

@ A quoi ga sert de faire tout ¢a ? Pourquoi on utilise pas simplement les variables xet y dans la fonction ?

Cela va nous servir a simplifier notre code. Mais pas seulement ! Par exemple, vous voulez faire plusieurs opérations différentes
(addition, soustraction, etc.) et bien au lieu de créer plusieurs fonctions, on ne va en créer qu'une qui les fait toutes ! Mais, afin
de lui dire quelle opération faire, vous lui donnerez un paramétre lui disant : "Multiplie ces deux nombres" ou bien "additionne
ces deux nombres".

Ce que cela donnerait :

Code : C
unsigned char operation = 0;
int x = 5;

int y = 10;

void loop ()
{

maFonction(x, y, operation); //le parametre "opération" donne
le type d'opération a faire

}

int maFonction (int paraml, int param2, int param3)
{
int resultat = 0;
switch (param3)
{
case 0
resultat = paraml + param?2; //addition, resultat = 15
break;
case 1
resultat = paraml - param2; //soustraction, resultat = -5
break;
case 2
resultat = paraml * param?2; //multiplication, resultat =
50
break;
case 3
resultat = paraml / param?2; //division, resultat = 0,5
break;
default
resultat = 0;
break;

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 78/326

return resultat;

Donc si la variable operation vaut 0, on addition les variables x et y, sinon sioperation vaut 1, on soustrait y a x. Simple
a comprendre, n'est-ce pas ? @

Comme son nom I'indique, cette partie va parler des tableaux.
@ Quel est I'intérét de parler de cette surface ennuyeuse qu'utilisent nos chers enseignants ?

Eh bien détrompez-vous, en informatique un tableau ¢a n'a rien a voir ! Si on devait (beaucoup) résumer, un tableau est une
grosse variable. Son but est de stocker des éléments de mémes types en les mettant dans des cases. Par exemple, un prof qui
stocke les notes de ses éleves. Il utilisera un tableau de float (nombre a virgule), avec une case par éléves.

Nous allons utiliser cet exemple tout au long de cette partie. Voici quelques précisions pour bien tout comprendre :

e chaque ¢léve sera identifié par un numéro allant de 0 (le premier éleve) a 19 (le vingtieme ¢éleve de la classe)
e on part de 0 car en informatique la premiére valeur dans un tableau est 0 !

Un tableau en programmation

Un tableau, tout comme sous Excel, c'est un ensemble constitué de cases, lesquels vont contenir des informations. En
programmation, ces informations seront des nombres. Chaque case d'un tableau contiendra une valeur. En reprenant l'exemple
des notes des éléves, le tableau répertoriant les notes de chaque éléve ressemblerait a ceci :

éleve 0 éléeve 1 éléve2 [...] éléve n-1 éléve n

10 | 155 8 |r.1| 18 7

A quoi ¢a sert ?

On va principalement utiliser des tableaux lorsque 'on aura besoin de stocker des informations sans pour autant créer une
variable pour chaque information.

Toujours avec le méme exemple, au lieu de créer une variable elevel, une autre eleve? et ainside suite pour chaque éleve,
on inscrit les notes des éleves dans un tableau.

@ Mais, concretement c'est quoiun tableau : une variable ? une fonction ?

Ni 'un, ni l'autre. En fait, on pourrait comparer cela avec un index qui pointe vers les valeurs de variables qui sont contenus dans
chaque case du tableau.

Un petit schéma pour simplifier :

variable dont on ne connait pas | idem, mais variable différente
le nom mais qui stocke une valeur de la case précédente

Par exemple, cela donnerait :

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 79/326

éleve 0 éleve 1

variable note eleveO | variable note elevel

Avec notre exemple :

éleve 0 éléve 1

10 15,5

Soit, lorsque I'on demandera la valeur de la case 1 (correspondant a la note de I'¢1éve 1), le tableau nous renverra le nombre : 15,5.

Alors, dans un premier temps, on va voir comment déclarer un tableau et l'initialiser. Wus verrez qu'il y a différentes manicres de
procéder. Apres, on finira par apprendre comment utiliser un tableau et aller chercher des valeurs dans celui-ci. Et pour finir, on
terminera ce chapitre par un exemple. Y'a encore du boulot ! @

Comme expliqué plus tot, un tableau contient des éléments de méme type. On le déclare donc avec un type semblable, et une
taille représentant le nombre d'¢léments qu'il contiendra.

Par exemple, pour notre classe de 20 étudiants :

Code : C

float notes[20];

On peut également créer un tableau vide, la syntaxe est légeérement différente :

Code : C

L
float notes[] = {};

On veut stocker des notes, donc des valeurs décimales entre 0 et 20. On va donc créer un tableau de float (car c'est le type de
variable qui accepte les nombres a virgule, souvenez-vous ! @). Dans cette classe, ily a 20 éleves (de 0 a 19) donc le tableau

contiendra 20 ¢léments.
Sion voulait faire un tableau de 100 étudiants dans lesquels on recense leurs nombres d'absence, on ferait le tableau suivant:

Code : C

char absenteisme[100];

Pour accéder a une case d'un tableau, il suffit de connaitre I'indice de la case a laquelle on veut accéder. L'indice c'est le numéro

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 80/326

de la case qu'on veut lire/écrire. Par exemple, pour lire la valeur de la case 10 (donc indice 9 car on commence a 0):

Code : C

float notes[20]; //notre tableau
float valeur; //une variable qui contiendra une note

valeur = notes[9]; //valeur contient désormais la note du dixiéme
éleve

Ce code se traduit par l'enregistrement de la valeur contenue dans la dixiéme case du tableau, dans une variable nommée
valeur.
1

A présent, sion veut aller modifier cette méme valeur, on fait comme avec une variable normale, il suffit d'utiliser l'opérateur'=":

Code : C

notes[9] = 10,5; //on change la note du dixieme éleve

En fait, on procéde de la méme maniére que pour changer la valeur d'une variable, car, je vous l'ai dit, chaque case d'un tableau
est une variable qui contient une valeur ou non.

Faites attention auxindices utilisés. Si vous essayezde lire/écrire dans une case de tableau trop loin (indice trop grand,
Q par exemple 987362598412 @), le comportement pourrait devenir imprévisible. Car en pratique vous modifierez des

valeurs qui seront peut-&tre utilisées par le systéme pour autre chose. Ce qui pourrait avoir de graves conséquences !

variable quin'appartiennent pas au programme, donc I'OS "tue" ce programme qui essai de manipuler des trucs quine

i Vous avez slirement rencontré des crashs de programme sur votre ordinateur, ils sont souvent da a la modification de
lui appartiennent pas.

Au départ, notre tableau était vide :

Code : C

float notes[20]; //on créer un tableau dont le contenu est vide, on
sait simplement qu'il contiendra 20 nombres

Ce que l'on va faire, c'est initialiser notre tableau. On a la possibilité de remplir chaque case une par une ou bien utiliser une
boucle qui remplira le tableau a notre place.

Dans le premier cas, on peut mettre la valeur que l'on veut dans chaque case du tableau, tandis qu'avec la deuxiéme solution, on
remplira les cases du tableau avec la méme valeur, bien que l'on puisse le remplir avec des valeur différentes mais c'est un peu

plus compliqué.

Dans notre exemple des notes, on part du principe que I'examen n'est pas passé, donc tout le monde a 0. @ Pour cela, on

parcourt toutes les cases en leur mettant la valeur 0 :

Code : C

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 81/326

char i1=0; //une variable que 1'on va incrémenter
float notes[20]; //notre tableau

void setup ()
{

for (i=0; i<20; i++) //boucle for qui remplira le tableau pour
nous

{

notes[i] = 0; //chaque case du tableau vaudra 0

}

L'initialisation d'un tableau peut se faire directement lors de sa création, comme ceci :

Code : C

float notel] {0,0,0,0 /*, etc.*/ };

Ou bien méme, comme cela :

@ Code : C

float notel[]

void setup ()

{

o e

~e

Il
[cNeoNoNe)

~e

@ Bon c'est bien beau tout ¢a, on a des notes coincées dans un tableau, on en fait quoi ?

Excellente question, et ca dépendra de l'usage que vous en aurez@ ! Voyons des cas d'utilisations pour notre tableau de notes
(en utilisant des fonctions @).

La note maximale

Comme le titre l'indique, on va rechercher la note maximale (le meilleur éleve de la classe). La fonction recevra en parametre le
tableau de float, le nombre d'éléments dans ce tableau et renverra la meilleure note.

Code : C

float meilleurNote (float tableau[], int nombreEleve)
{
int 1 = 0;

int max 0; //variables contenant la future meilleure note

www.siteduzero.com

http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 82/326

for (i=0; i<nombreEleve, 1i++)
{

if (tableaul[i] > max) //si la note lue est meilleure que la
meilleure actuelle

{
max = tableauli]; //alors on 1'enregistre
}
}

return max; //on retourne la meilleure note

Ce que l'on fait, pour lire un tableau, est exactement la méme chose que lorsqu'on l'nitialise avec une boucle for.

Il est tout a fait possible de mettre la valeur de la case recherché dans une variable :

Code : C

@ int valeur = tableaul[5];

//on enregistre la valeur de la case
6 du tableau dans une variable

Voila, ce n'était pas sidur, vous pouvez faire pareil pour chercher la valeur minimale afin vous entrainer !

Calcul de moyenne

Ici, on va chercher la moyenne des notes. La signature de la fonction sera exactement la méme que celle de la fonction

précédente, a la différence du nom! Je vous laisse réfléchir, voici la signature de la fonction, le code est plus bas mais essayez de
le trouver vous-méme avant :

Code : C

float moyenneNote (float tableaul[], int nombreEleve)

Une solution :
Secret (cliquez pour afficher)

Code : C

float moyenneNote (float tableau[], int nombreEleve)

{

int i = 0;
double total = 0; //addition de toutes les notes
float moyenne = 0; //moyenne des notes

for (i=0; i<nombreEleve; i++)

{

total = total + tableaulil];

}

moyenne = total / nombreEleve;
return moyenne;

On en termine avec les tableaux, on verra peut étre plus de choses en pratique. @

Maintenant vous pouvez pleurer, de joie bien siir, car vous venez de terminer la premiére partie ! A présent, faisons place a la

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 1 : [Théorie] Découverte de I'Arduino 83/326

pratique...

Vous voila fin prét pour commencer a utiliser votre carte ! Alors rendez-vous a la prochaine partie du cours.

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 84/326

Maintenant que vous avez acquis assez de connaissances en programmation et quelques notions d'électronique, on va se
pencher sur lutilisation de la carte Arduino. Je vais vous parler des entrées et des sorties de la carte. On va commencer
simplement, donc vous étonnez pas sivous allez vite dans la lecture des chapitres.

& Nenégligezpas les bases, sans quoi vous risquez de ne pouvoir suivre les chapitres plus complexes ! Un conseil aussi,
& essayezde bien comprendre avant de passer au chapitre suivant, on ne fait pas la course, chacun fait a son rythme.

-—> Matériel nécessaire : dans la balise secret pour la partie 2.

Notre premier programme !

Vous voila enfin arrivé au moment fatidique ou vous allez devoir programmer ! Mais avant cela, je vais vous montrer ce qui va
nous servir pour ce chapitre. En l'occurrence, apprendre a utiliser une LED et la référence, présente sur le site arduino.cc qui
vous sera trés utile lorsque vous aurez besoin de faire un programme utilisant une notion quin'est pas traitée dans ce cours.

La question n'est pas de savoir quelle abréviation choisir mais plutot de savoir qu'est ce que c'est.

Une DEL/ LED : Diode Electro-Luminescente, ou bien "Light Emitting Diode" en anglais. C'est un
composant électronique qui crée de la lumiere quand il est parcouru par un courant électrique. Je vous en ai
fait acheter de différentes couleurs. VWus pouvez, pour ce chapitre, utiliser celle que vous voudrez, cela mest
égal. @ Vous voyez, sur votre droite, la photo d'une DEL de couleur rouge. La taille n'est pas réelle, sa

"téte" (en rouge) ne fait que Smm de diametre.

Clest ce composant que nous allons essayer d'allumer avec notre carte Arduino. Mais avant, voyons un peu
comment il fonctionne.

diode qui émet de la lumicre. Je vais donc vous parler du fonctionnement des diodes en méme temps

i Jappellerai la diode électroluminescente, tout au long du cours, une LED. Une LED est en fait une
que celuides LED.

Symbole

Sur un schéma ¢électronique, chaque composant est repéré par un symbole qui lui est propre. Celui de la
diode est celui-ci:

cathode anode

Celuide la LED est :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515615-presentation.html#ss_part_3
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 85/326

N\

cathode anode

Il'y a donc trés peu de différence entre les deux. La LED est simplement une diode qui émet de la lumicre, d'ou les fléches sur son
symbole.

Astuce mnémotechnique

Pour ce souvenir de quel c6té est 'anode ou la cathode, voiciune toute simple et en image @

cathode K anode cathode anode

K comme K-thode A comme A-node

Polarisation directe

On parle de polarisation lorsqu'un composant électronique est utilisé dans un circuit électronique de la "bonne maniére". En fait
lorsqu'il est polarisé, c'est qu'on l'utilise de la facon souhaitée.

Pour polariser la diode, on doit faire en sorte que le courant doit la parcourir de I'anode vers la cathode. Autrement dit, la tension
doit étre plus élevée a l'anode qu'a la cathode.

+ DICDE
e | \'4
I Tension I
: 5V
S

Figure 1 : diode polarisée directement

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 86/326

Polarisation inverse

La polarisation inverse d'une diode est l'opposé de la polarisation directe. Pour créer ce type de montage, il suffit simplement,
dans notre cas, de "retourner" la diode enfin la brancher "a l'envers". Dans ce cas, le courant ne passe pas.

+ DIODE

| Tension =0
: =1

Figure 2 : diode polarisée en inverse

Note : une diode polarisée en inverse ne grillera pas si elle est utilisée dans de bonnes conditions. En fait, elle
fonctionne de "la méme fagcon" pour le courant positif et négatif.

Utilisation

A Sivous ne voulez pas faire partir votre premicre diode en fumée, je vous conseille de lire les prochaines lignes
“ attentivement

En électronique, deux paramétres sont a prendre en compte: le courant et la tension. Pour une diode, deuxtensions sont
importantes. Il s'agit de la tension maximum en polarisation directe, et la tension maximum en polarisation inverse. Ensuite, pour
un bon fonctionnement des LED, le courant a lui aussi son importance.

La tension maximum directe

Lorsque l'on utilise un composant, on doit prendre 'habitude d'utiliser la "datasheet" ("documentation technique" en anglais)
quinous donne toutes les caractéristiques sur le composant. Dans cette datasheet, on retrouvera quelque chose appelé
"Forward Wltage", pour la diode. Cette indication représente la chute de tension auxbornes de la diode lorsque du courant la
traverse en sens direct. Pour une diode classique (type 1N4148), cette tension sera d'environ 1V, Pour une led, on considérera
plutdt une tension de 1,2 a 1,6V,

Bon, pour faire nos petits montages, on ne va pas chipoter, mais c'est la démarche a faire lorsque l'on congoit un
schéma électrique et que l'on dimensionne ses composants.

La tension maximum inverse

Cette tension représente la différence maximum admissible entre 'anode et la cathode lorsque celle-ci est branchée "a l'envers".
En effet, si vous mettezune tension trop importante a ces bornes, la jonction ne pourra pas le supporter et partira en fumée. En
anglais, on retrouve cette tension sous le nomde "Reverse Wltage" (ou méme "Breakdown VWltage"). Silon reprend la diode
IN4148, elle sera comprise entre 75 et 100V. Au-dela de cette tension, la jonction casse et la diode devient inutilisable. Dans ce
cas, la diode devient soit un court-circuit, soit un circuit ouvert. Parfois cela peu causer des dommages importants dans nos

www.siteduzero.com

http://pdf1.alldatasheet.com/datasheet-pdf/view/196195/PHILIPS/1N4148.html
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 87/326

appareils électroniques ! Quoi qu'il en soit, on ne manipulera jamais du 75V'! @)

Le courant de passage
Pourune LED, le courant qui la traverse a son importance. Si l'on branche directement la led sur une pile, elle va s'allumer, puis
tot ou tard finira par s'éteindre... définitivement. En effet, si on ne limite pas le courant traversant la LED, elle prendra le courant

maximum, et ¢a c'est pas bon car ce n'est pas le courant maximum qu'elle peut supporter. Pour limiter le courant, on place une
résistance avant (ou apres) la LED. Cette résistance, savamment calculée, lui permettra d'assurer un fonctionnement optimal.

Mais comment on la calcule cette résistance ?

Simplement avec la formule de base, la loi d'ohm. @

Petit rappel:

F=R=x=T

Dans le cas d'une LED, on considére, en général, que l'intensité la traversant doit-&tre de 20 mA. Sion veut étre rigoureux, il faut
aller chercher cette valeur dans le datasheet.

Onadonc J = A

Ensuite, on prendra pour l'exemple une tension d'alimentation de 5V (en sortie de I'Arduino, par exemple) et une tension aux
bomes de la LED de 1,2V en fonctionnement normal. On peut donc calculer la tension qui sera auxbornes de la résistance :

Ur=5-1,2=38V

Enfin, on peut calculer la valeur de la résistance a utiliser :

. u
Soit : f — —
oit : i 7
3, 8
R=—
0,02
R =1900

Et voila, vous connaissez la valeur de la résistance a utiliser pour étre sur de ne pas griller des LED a tour de bras. @

A votre avis, vaut-il mieux utiliser une résistance de plus forte valeur ou de plus faible valeur ?

Secret (cliquez pour afficher)

Réponse :

Sion veut étre stir de ne pas détériorer la LED a cause d'un courant trop fort, on doit placer une résistance dont la valeur est
plus grande que celle calculée. Autrement, la diode admettrait un courant plus intense qui circulerait en elle et cela pourrait la
détruire.

Le but

Le but de ce premier programme est... de vous faire programmer ! @) Non, je ne rigole pas ! Car c'est en pratiquant la

programmation que l'on retient le mieux les commandes utilisées. De plus, en faisant des erreurs, vous vous forgerez de bonnes
bases qui vous seront trés utiles ensuite, lorsqu'il s'agira de gagner du temps. Mais avant tout, c'est aussi parce que ce tuto est
centré sur la programmation que l'on va programmer !

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 88/326

Objectif

L'objectif de ce premier programme va consister a allumer une LED. C'est nul me direz vous. J'en conviens. Cependant, vous
verrez que ce n'est pas trés simple. Bien entendu, je n'allais pas créer un chapitre entier dont le but ultime aurait été d'allumer une
LED ! Non. Alors j'ai prévu de vous montrer deux trois trucs qui pourront vous aider dés lors que vous voudrez sortir du nid et
prendre votre envol vers de nouveaux cieux !

Materiel

Pour pouvoir programmer, il vous faut, bien évidemment, une carte Arduino et un cable USB pour relier la carte au PC. Mais pour
voir le résultat de votre programme, vous aurez besoin d'éléments supplémentaires. Notamment, une LED et une résistance.

Avec le brochage de la carte Arduino, vous devrez connecter la plus grande patte au +5V (broche 57). La plus petite patte étant
reliée a la résistance, elle-méme reliée a la broche numéro 2 de la carte. Tout ceci a une importance. En effet, on pourrait faire le
contraire, brancher la LED vers la masse et l'allumer en fournissant le 5V depuis la broche de signal. Cependant, les composants
comme les microcontroleurs n'aiment pas trop délivrer du courant, ils préférent l'absorber. Pour cela, on préférera donc alimenter
la LED en la placant au +5V et en mettant la broche de Arduino a la masse pour faire passer le courant. Si on met la broche a 5V,
dans ce cas le potentiel est le méme de chaque c6té de la LED et elle ne s'allume pas !

Ce n'est pas plus compliqué que ¢a ! @

Schéma de la réalisation (un exemple de branchement sans breadboard et deux exemples avec) :

=1
Ardulngl
EATE I Vin
Power
—4 RST D12 }—
—d AREF D12 |
Arduino on =
D10 =
[}I; PV
2
2 DE fe—
o
S 07 b— sV
= LED1
= D i Red (633nm)
o
- o LR
AD 2 ps o
2200 SZ
- 2 3 2 X
3
—_— A3 — D? | AAA]
— M E Dl f—
— AS Do =2
GND

Figure 3 : réalisation montage, schéma de la carte

www.siteduzero.com

http://www.siteduzero.com

Partie 2 :

[Pratique] Gestion des entrées / sorties

89/326

TEUEARJE RAR

L]
=

Py m

autn

Bird om

Montage avec une LED et sans breadboard

ol L L L -
ol T EHF S T HEEEE EiE
o - & & @ L L L i
b L L L O R
b L L L 4 5
L L L
il T EFS T EEFEEE & b
ol - & & & L L L N
i L & & & & & 3 9
g L L L 3 o
o L & & 8 & -
LA T EEEE
ol W L L L L EiE
o bbbl il bbb 55 SR 1N Montage une LED sur
b - LA L L O &
ol - L L L o
ol * ¥ L LB L B L &
L - & L N
e & * -
i - & & A & L L & b
L AL BB L T HEEEE &
& L L B A L L N
& & & & & & @ &
i L O L - 9
il - & & @ W L O - b
o LB AL BL B T EEES & b
ol * & & & @ L L L T
i & & & A & & & & @ & 3
- & & & & L L
breadboard
L L L L LI L L - LA
L LI Ll L LI B B L L L " W
- & @ L S
L L S O
L L R
i TEPEFFTFTFERETFTERY
- " @ T
Montage
L - w w R R R R R R E
FEFFFIFFFFFIFFFIFTFFFFIRFRFFFFNRE
@ B R e E R E
R E R R R R R R R R R R R R R R R R R
l'till'ilttfti’liiirfiilltfiiitil
LR ‘.“, Ll T Ll
L R e w LR S - w

une LED sur breadboard

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 90/326

Pour pouvoir programmer notre carte, il faut que l'on créer un nouveau programme. Ouvrez votre logiciel Arduino. Allez dans le
menu File Et choisissez l'option Save as... :

oo sketch_apr13a | Arduino 0022 M=1E3

Edit Sketch Tools Help
MrlEw Chrl+r
Cpen. .. Chrl+0
Sketchbook, [
Examples b -
Close Chrl-w E:
Save Chrl+5
Save As,.. Chrl+-Maj+5
Upload ko Ifi2 Board Chrl+U
Page Setup CerH+Maj+P
Prink Chrl+P
Preferences Zkrl+Comma
ik ChrH+0)
b

Figure 4 : Enregistrer sous...

Vous arrivez dans cette nouvelle fenétre :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 91/326

Save sketch folder as...

Enregistrer dans |h Frogramme_Arduino V| (I ? ;o v

M ez documents
récents

@l

Bureau

e i
(=

kM ez documents

P

Poszte de travail

<

Mom du fichier : |test_'| V| [Enreqiztrer]

Eﬁ

Favariz rézean Type: |T|:|us e fichiars [%7) v| [Annuler]

Figure 5 : Enregistrer

Tapez le nom du programme, dans mon cas, je l'ai appelé test I . Enregistrez. vous arriver dans votre nouveau programme, qui
est vide pour l'instant, et dont le noms'affiche en Haut de la fenétre et dans un petit onglet :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 92/326

=& test_1 | Arduino 0022
File Edit Sketch Tools Help

Figure 6 : Votre nouveau programme !

Le code minimal

Pour commencer le programme, il nous faut un code minimal. Ce code va nous permettre d'initialiser la carte et va servir a écrire
notre propre programme. Ce code, le voici :

Code : C

void setup ()
{

//fonction d'initialisation de la carte

//contenu de 1'initialisation

}

void loop ()
(s’exécute) a 1'infini

{

//fonction principale, elle se répete

//contenu de votre programme

}

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 93/326

Qu'est ce que c'est ?

L'Arduino étant un projet dont la communauté est trés active, nous offre sur son site internet une référence. Mais qu'est ce que
c'est ? Et bien il s'agit simplement de "la notice d'utilisation" du langage Arduino.

Plus exactement, une page internet de leur site est dédiée au référencement de chaque code que l'on peut utiliser pour faire un
programme.

Comment l'utiliser ?

Pour l'utiliser, il suffit d'aller sur la page de leur site, malheureusement en anglais, mais dont il existe une traduction pas tout a fait
compléte sur le site Francais Arduino.

Ce que l'on voit en arrivant sur la page : trois colonnes avec chacune un type d'¢léments qui forment les langages Arduino.

e Structure : cette colonne référence les éléments de la structure du langage Arduino. On y retrouve les conditions, les
opérations, etc.

e JVariables : Comme son nom l'indique, elle regroupe les différents types de variables utilisables, ainsi que certaines
opérations particuliéres

e Functions :Icic'est tout le reste, mais surtout les fonctions de lecture/écriture des broches du microcontréleur (ainsi que
d'autres fonctions bien utiles)

des programmes sans avoir appris préalablement a utiliser telle fonction ou telle autre. Vous pourrez devenir les maitres

Il est tres important de savoir utiliser la documentation que nous offre Arduino ! Car en sachant cela, vous pourrez faire
&
du monde !!! Euh, non, je crois pas en fait...

lere étape
Il faut avant tout définir les broches du micro-contréleur. Cette étape constitue elle-méme deuxsous étapes. La premicre étant de
créer une variable définissant la broche utilisée, ensuite, définir sila broche utilisée doit étre une entrée du micro-contréleur ou
une sortie.

Premi¢rement, donc, définissons la broche utilisée du micro-contréleur :

Code : C

const int led rouge = 2; //définition de la broche 2 de la carte
en tant que variable

Le terme const signifie que 'on définit la variable comme étant constante. Par conséquent, on change la nature de la variable qui
devient alors constante.

Le terme int correspond a un type de variable. En définissant une variable de ce type, elle peut stocker un nombre allant de -
2147483648 a +2147483647 | Cela nous suffit amplement ! @

Nous sommes donc en présence d'une variable, nommée led rouge, qui est en fait une constante, qui peut prendre une valeur
allant de -2147483648 a +2147483647. Dans notre cas, cette variable, pardon constante, est assignée a 2. Le chiffre 2.

O Lorsque votre code sera compilé, le micro-contrdleur saura ainsi que sur sa broche numéro 2, il y a un élément connecté

www.siteduzero.com

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/fr/Main/Reference
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

94/326

Bon, cela ne suffit pas de définir la broche utilisée. Il faut maintenant dire si cette broche est une entrée ou une sortie. Oui, car le

micro-contrdleur a la capacité d'utiliser certaines de ses broches en entrée ou en sortie. C'est fabuleux ! En effet, il suffit

simplement d’interchanger UNE ligne de code pour dire qu'il faut utiliser une broche en entrée (récupération de donnée) ou en

sortie (envoide donnée).

Cette ligne de code justement, parlons-en ! Elle doit se trouver dans la fonction setup(). Dans la référence, ce dont nous avons
besoin se trouve dans la catégorie Functions, puis dans Digital I/O. I/O pour Input/Output, ce qui signifie dans la langue de

Moliére : Entrée/Sortie.

La fonction se trouve étre pinMode(). Pour utiliser cette fonction, il faut lui envoyer deux paramétres :

e lenomde la variable que l'on a défini a la broche
e Letype de broche que cela va étre (entrée ou sortie)

Code : C

void setup ()

{

pinMode (led rouge, OUTPUT); //initialisation de la broche 2
comme étant une sortie

}

Ce code va donc définir la led_rouge (qui est la broche numéro 2 du micro-contréleur) en sortie, car OUTPUT signifie en frangais

1 sortie.

Maintenant, tout est prét pour créer notre programme. Voici le code quasiment complet :

Code : C

const int led rouge = 2; //définition de la broche 2 de la carte
en tant que variable

void setup () //fonction d'initialisation de la carte
{

pinMode (led rouge, OUTPUT); //initialisation de la broche 2
comme étant une sortie

}

void loop () //fonction principale, elle se répete
(s’exécute) a 1'infini
{

//contenu de votre programme

}

2e étape

Cette deuxieme étape consiste a créer le contenu de notre programme. Celui qui va aller remplacer le commentaire dans la

fonction loop(), pour réaliser notre objectif : allumer la LED !

La encore, on ne claque pas des doigts pour avoir le programme tout prét ! @) Il faut retourner chercher dans la référence

Arduino ce dont on a besoin.

Oui, mais 13, on ne sait pas ce que l'on veut ?

On cherche une fonction qui va nous permettre d'allumer cette LED. Il faut donc que l'on se débrouille pour la trouver. Et avec

notre niveau d'anglais, on va facilement trouver. Soyons un peu logique, si vous le voulez bien. Nous savons que c'est une
fonction qu'ilnous faut (je 'aidis il y a un instant), on regarde donc dans la catégorie Functions de la référence. Si on garde

notre esprit logique, on va s'occuper d'allumer une LED, donc de dire quel est I'état de sortie de la broche numéro 2 ou laquelle

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 95/326

est connectée notre LED. Donc, il est fort & parier que cela se trouve dans Digital I/O. Tiens, il y a une fonction suspecte quise
prénomme digital Write(). En francais, cela signifie "écriture numérique". C'est donc I'écriture d'un état logique (0 ou 1).

Quel se trouve étre la premiére phrase dans la description de cette fonction ? Celle-ci : "Write a HIGH or a LOW value to a digital
pin". D'aprés notre niveau bilingue, on peut traduire par : Ecriture d'une valeur HAUTE ou une valeur BASSE sur une sortie
numérique. Bingo ! C'est ce que l'on recherchait ! Il faut dire que je vous aiun peu aidé.

@ Ce signifie quoi "valeur HAUTE ou valeur BASSE" ?

En électronique numérique, un niveau haut correspondra a une tension de +5V et un niveau dit bas sera une tension de 0V
(généralement la masse). Sauf qu'on a connecté la LED au pdle positif de I'alimentation, donc pour qu'elle s'allume, il faut qu'elle
soit reliée au OV, Par conséquent, on doit mettre un état bas sur la broche du microcontroleur. Ainsi, la différence de potentiel aux
bornes de la LED permettra a celle-ci de s'allumer

Voyons un peu le fonctionnement de digital Write() en regardant dans sa syntaxe. Elle requiert deux paramétres. Le nomde la
broche que l'on veut mettre a un état logique et la valeur de cet état logique.

Nous allons donc écrire le code qui suit, d'aprés cette syntaxe :

Code : C

digitalWrite (led rouge, LOW); // écriture en sortie (broche 2) d'un
état BAS

Sion teste le code entier :

Code : C

const int led rouge = 2; //définition de la broche 2 de la carte
en tant que variable

void setup () //fonction d'initialisation de la carte
{

pinMode (led rouge, OUTPUT); //initialisation de la broche 2
comme étant une sortie

}

void loop () //fonction principale, elle se répete
(s’exécute) a 1'infini
{

digitalWrite (led rouge, LOW); // écriture en sortie (broche 2)
d'un état BAS
}

On voit s'éclairer la LED !!! C'est fantastique !

A présent, vous savez utiliser les sorties du micro-contréleur, nous allons donc pouvoir passer auxchoses sérieuses et faire
clignoter notre LED !

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 96/326

Introduire le temps

Clest bien beau d'allumer une LED, mais si elle ne fait rien d'autre, ce n'est pas trés utile. Autant la brancher directement sur une
pile (avec une résistance tout de méme ! @)). Alors voyons comment rendre intéressante cette LED en la faisant clignoter ! Ce

que ne sait pas faire une pile...

Pour cela il va nous falloir introduire la notion de temps. Et bien devinez quoi ? Il existe une fonction toute préte la encore ! Je ne
vous en dis pas plus, passons a la pratique !

Trouver la commande...

Je vous laisse cherche un peu par vous méme, cela vous entrainera ! @

Pour ceux qui ont fait l'effort de chercher et n'ont pas trouvé (a cause de l'anglais ?), je vous donne la fonction qui va bien :
On va utiliser : delay()
Petite description de la fonction, elle va servir a mettre en pause le programme pendant un temps prédéterminé.

Utiliser la commande
La fonction admet un paramétre qui est le temps pendant lequel on veut mettre en pause le programme. Ce temps doit étre donné
en millisecondes. C'est-a-dire que sivous voulez arréter le programme pendant 1 seconde, il va falloir donner a la fonction ce
méme temps, écrit en millisecondes, soit 1000ms.

Le code est simple a utiliser, il est le suivant :

Code : C

delay(1000); // on fait une pause du programme pendant 1000ms,
soit 1 seconde

Rien de plus simple donc. Pour 20 secondes de pause, il aurait fallu écrire :

Code : C

delay (20000); // on fait une pause du programme pendant 20000ms,
soit 20 secondes

Mettre en pratique : faire clignoter une LED

Du coup, sion veut faire clignoter notre LED, il va falloir utiliser cette fonction. Vyons un peu le schéma de principe du
clignotement d'une LED :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 97/326

On allume la LED

U

On attend X secondes

Y

On éteint la LED

v

On attend X secondes

on boucle le
programme

Vous le voyez, la LED s'allume. Puis, on fait intervenir la fonction delay(), qui va mettre le programme en pause pendant un
certain temps. Ensuite, on éteint la LED. On met en pause le programme. Puis on revient au début du programme. On recommence
et ainsi de suite. C'est cette somme de commande, qui forme le processus qui fait clignoter la LED.

O Dorénavant, prenez I'habitude de faire ce genre de schéma lorsque vous faites un programme. Cela aide grandement la

réflexion, croyez moi ! @ Clest le principe de perdre du temps pour en gagner. Autrement dit : I'organisation !

Maintenant, il faut que l'on traduise ce schéma, portant le nom d'organigramme, en code. Il suffit pour cela de remplacer les
phrases dans chaque cadre par une ligne de code.

Par exemple, "on allume la LED", va étre traduis par l'instruction que l'on a vue dans le chapitre précédent :

Code : C

digitalWrite (led rouge, LOW); // allume la LED

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 98/326

Ensuite, on traduit le cadre suivant, ce qui donne :

Code : C

delay (1000) ; // fait une pause de 1 seconde (= 1000ms)

Puis, on traduit la ligne suivante :

Code : C

digitalWrite (led rouge, HIGH); // éteint la LED

Enfin, la demiére ligne est identique a la deuxiéme, soit :

Code : C

delay (1000) ; // fait une pause de 1 seconde

On se retrouve avec le code suivant :

Code : C

digitalWrite (led rouge, LOW) ; // allume la LED

delay (1000) ; // fait une pause de 1 seconde
digitalWrite (led rouge, HIGH); // éteint la LED
delay (1000) ; // fait une pause de 1 seconde

La fonction qui va boucler a I'infini le code précédent est la fonction loop(). On inscrit donc le code précédent dans cette fonction

Code : C

void loop ()

{
digitalWrite (led rouge, LOW); // allume la LED
delay (1000) ; // fait une pause de 1 seconde
digitalWrite (led rouge, HIGH); // éteint la LED
delay (1000) ; // fait une pause de 1 seconde

Et on n'oublie pas de définir la broche utilisée par la LED, ainsi que d'itialiser cette broche en tant que sortie. Cette fois, le code
est terminé !

Code : C
const int led rouge = 2; //définition de la broche 2 de la
carte en tant que variable
void setup () //fonction d'initialisation de la
carte

{

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 99/326

pinMode (led rouge, OUTPUT); //initialisation de la broche 2
comme étant une sortie

}

void loop () //fonction principale, elle se
répete (s’exécute) a 1'infini

{

digitalWrite (led rouge, LOW); // allume la LED

delay(1000) ; // fait une pause de 1 seconde
digitalWrite (led rouge, HIGH); // éteint la LED

delay (1000) ; // fait une pause de 1 seconde

Vous n'avez plus qu'a charger le code dans la carte et admirer saes votre travail | La LED clignote ! Libre a vous de changer le
temps de clignotement : vous pouvez par exemple éteindre la LED pendant 40ms et l'allumer pendant 600ms :

Code : C

const int led rouge = 2; //définition de la broche 2 de la
carte en tant que variable

void setup () //fonction d'initialisation de la
carte
{

pinMode (led rouge, OUTPUT); //initialisation de la broche 2
comme étant une sortie

}

void loop () //fonction principale, elle se
répéete (s’exécute) a 1'infini

{

digitalWrite (led rouge, LOW); // allume la LED

delay (600) ; // fait une pause de 600 milli-
seconde

digitalWrite (led rouge, HIGH); // éteint la LED

delay (40) ; // fait une pause de 40 milli-
seconde

}

Et Hop, une petite vidéo d'illustration !

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 100/326

Vous avouerez facilement que ce n'était pas bien difficile d'arriver jusque-1a. Alors, a présent, accentuons la difficulté. Notre but :
faire clignoter un groupe de LED.

Le materiel et les schémas

Ce groupe de LED sera composé de six LED, nommées L1, L2, L3, L4, L5 et L6. Vous aurez par conséquent besoin d'un nombre
semblable de résistances.

Le schéma de la réalisation :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 101/326

5y
Arduinoi
V3 5Y Vin
Power
— RST D13 — =
—d AREF D12 |
Arduino o =
D10 EAM
Dy oA
3 AV bV
S g
g R RR R
3 n-.l|I ——l—%—n—
% P
E D6 My
—] 0 2 D5 [N,
—_ Al D4 AN
=g
-1 A2 E_: D3 |— A
o
— :‘5!-3 -__1— D2 ‘#'
— p4 & Dl
—] Do =
GND

La photo de la réalisation :

|

it
L R I

‘.E;':ZZ:::ZZ:

F

TLIELELET]
= =}
-

=

-
R O A I A A A)

i

-
-

5hEETO ULhPuI ASY 2

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

102/326

Le programme

Le programme est un peu plus long que le précédent, car il ne s'agit plus d'allumer 1 seule LED, mais 6 ! Voila l'organigramme que
va suivre notre programme :

|

v
allumer L1 eteindre L1
) Y
allumer L2 eteindre L2
Y U
allumer L3 eteindre L3
] U
allumer L4 eteindre L4
U)
allumer L5 eteindre L5
U Y
allumer L6 eteindre L6

U

J

attendre X sec

attendre X sec

on boucle le programme

Cet organigramme n'est pas trés beau, mais il a le mérite d'étre assez lisible. Nous allons essayer de le suivre pour créer notre

programme.

Traduction des six premiéres instructions :

Code : C
digitalWrite (L1, LOW) ;
digitalWrite (L2, LOW) ;
digitalWrite (L3, LOW) ;
digitalWrite (L4, LOW);
digitalWrite (L5, LOW) ;
digitalWrite (L6, LOW) ;

Ensuite, on attend 1,5 seconde :

//notez que le nom de la broche a changé
//et ce pour toutes les LED connectées
//au micro-controleur

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

103/326

Code : C

delay (1500) ;

Puis on traduis les sixautres instructions :

Code : C
digitalWrite (L1, HIGH); //on éteint les LED
digitalWrite (L2, HIGH) ;
digitalWrite (L3, HIGH) ;
digitalWrite (L4, HIGH) ;
digitalWrite (L5, HIGH);
digitalWrite (L6, HIGH) ;

Enfin, la demiére ligne de code, disons que nous attendrons 4,32 secondes :

Code : C

delay (4320);

Tous ces bouts de code sont a mettre a la suite et dans la fonction loop() pour qu'ils se répétent.

Code : C

void loop ()
{

digitalWrite (L1, LOW); //allumer les LED

digitalWrite (L2, LOW) ;

digitalWrite (L3, LOW) ;

digitalWrite (L4, LOW);

digitalWrite (L5, LOW) ;

digitalWrite (L6, LOW) ;

delay (1500) ; //attente du programme de 1,5 secondes
digitalWrite (L1, HIGH); //on éteint les LED

digitalWrite (L2, HIGH) ;

digitalWrite (L3, HIGH);

digitalWrite (L4, HIGH);

digitalWrite (L5, HIGH);

digitalWrite (L6, HIGH) ;

delay (4320) ; //attente du programme de 4,32 secondes

Je l'ai mentionné dans un de mes commentaires entre les lignes du programme, les noms attribués auxbroches sont a changer. En
effet, car si on définit des noms de variables identiques, le compilateur n'aimera pas ¢a et vous affichera une erreur. En plus, le

micro-contréleur ne pourrait pas exécuter le programme car il ne saurait pas quelle broche mettre a I'état HAUT ou BAS.

Pour définir les broches, on fait la méme chose qu'a notre premier programme :

Code : C

const int L1 = 2; //broche 2 du micro-contrdleur se nomme

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 104/326

maintenant : LI
const int L2 = 3; //broche 3 du micro-contrdéleur se nomme
maintenant : L2

const int L3 4; //
const int L4 = 5
const int L5 = 6;

7

const int L6 =

Maintenant que les broches utilisées sont définies, il faut dire si ce sont des entrées ou des sorties :

Code : C
pinMode OUTPUT); //L1 est une broche de sortie
pinMode OUTPUT); //L2 est une broche de sortie
pinMode OUTPUT) ; //

pinMode OUTPUT) ;

(L1,
(L2
(L3
pinMode (L4, OUTPUT) ;
(L5,
pinMode (L6, OUTPUT) ;

Le programme final

IIn'est certes pas trés beau, mais il fonctionne :

Code : C
const int L1 = 2; //broche 2 du micro-contréleur se nomme
maintenant : L1
const int L2 = 3; //broche 3 du micro-contrdéleur se nomme
maintenant : L2

const int L3 4;: //
const int L4 = 5;
const int L5 = 6
const int L6 = 7

void setup ()

{

pinMode (L1, OUTPUT); //L1 est une broche de sortie
pinMode (L2, OUTPUT); //L2 est une broche de sortie
pinMode (L3, OUTPUT); //

pinMode (L4, OUTPUT) ;

pinMode (L5, OUTPUT) ;

pinMode (L6, OUTPUT) ;

}

void loop ()
{

digitalWrite (L1, LOW); //allumer les LED
digitalWrite (L2, LOW) ;

digitalWrite (L3, LOW) ;

digitalWrite (L4, LOW) ;

digitalWrite (L5, LOW) ;

digitalWrite (L6, LOW) ;

delay (1500) ; //attente du programme de 1,5 secondes
digitalWrite (L1, HIGH); //on éteint les LED
digitalWrite (L2, HIGH);

digitalWrite (L3, HIGH);

digitalWrite (L4, HIGH);

digitalWrite (L5, HIGH) ;

digitalWrite (L6, HIGH);

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 105/326

delay (4320); //attente du programme de 4,32 secondes

Voila, vous avezen votre possession un magnifique clignotant, que vous pouvezattacher a votre vélo ! @)

@ Une question me chiffonne. Doit-on toujours écrire I'état d'une sortie, ou peut-on faire plus simple ?

Tu souléves un point intéressant. Sije comprends bien, tu te demandes comment faire pour remplacer I'intérieur de la fonction
loop()? Cest vrai que c'est trés lourd a écrire et a lire ! Il faut en effet s'occuper de définir I'état de chaque LED. Cest rébarbatif,
surtout sivous en aviez mis autant qu'ily a de broches disponibles sur la carte !

Il'y a une solution pour faire ce que tu dis. Nous allons la voir dans quelques chapitres, ne sois pas impatient ! @

En attendant, voici une vidéo d'illustration du clignotement :

Le but du programme

Le but du programme que nous allons créer va consister a réaliser un chenillard. Pour ceux qui ne savent pas ce qu'est un
chenillard, je vous ai préparé une petite image .gif animée :

Comme on dit souvent, une image vaut mieux qu'un long discours ! @

Voila donc ce qu'est un chenillard. Chaque LED s'allume alternativement et dans l'ordre chronologique. De la gauche vers la
droite ou l'inverse, c'est au choix.

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 106/326

Organigramme

Comme j'en ai marre de faire des dessins avec paint.net, je vous laisse réfléchir tout seul comme des grands a l'organigramme du
programme.

Bon, aller, le voila cet organigramme ! Attention, il n'est pas complet, mais si vous avez compris le principe, le compléter ne vous
posera pas de problémes :

Secret (cliquez pour afficher)

v

allumer L1

U

attendre X sec

U

éteindre L1

U

allumer L6

U

attendre X sec

U

eteindre L6

on boucle le
programme

A vous de jouer!

Le programme

Normalement, sa conception ne devrait pas vous poser de problemes. Il suffit en effet de récupérer le code du programme
précédent ("allumer un groupe de LED") et de le modifier en fonction de notre besoin.

Ce code, je vous le donne, avec les commentaires quivont bien :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 107/326

Code : C

// on garde le méme début que le programme précédent

const int L1 = 2; //broche 2 du micro-contrdéleur se nomme
maintenant : Ll
const int L2 = 3; //broche 3 du micro-contrdleur se nomme
maintenant : L2
const int L3 = 4; //
const int L4 = 5;
const int L5 = 6;
const int L6 = 7;
void setup ()
{
pinMode (L1, OUTPUT); //Ll1 est une broche de sortie
pinMode (L2, OUTPUT); //L2 est une broche de sortie
pinMode (L3, OUTPUT); //
pinMode (L4, OUTPUT) ;
pinMode (L5, OUTPUT) ;
pinMode (L6, OUTPUT) ;

}

// on change simplement 1’intérieur de la boucle pour atteindre
notre objectif

void loop() //la fonction loop() exécute le code qui suit en le
répétant en boucle
{
digitalWrite (L1, LOW); //allumer LI
delay (1000) ; //attendre 1 seconde
digitalWrite (L1, HIGH); //on éteint LI
digitalWrite (L2, LOW) ; //on allume L2 en méme temps que 1'on
éteint L1
delay (1000) ; //on attend 1 seconde
digitalWrite (L2, HIGH); //on éteint L2 et
digitalWrite (L3, LOW) ; //on allume immédiatement L3
delay (1000) ; /7
digitalWrite (L3, HIGH);
digitalWrite (L4, LOW) ;
delay (1000) ;
digitalWrite (L4, HIGH);
digitalWrite (L5, LOW) ;
delay (1000) ;
digitalWrite (L5, HIGH);
digitalWrite (L6, LOW) ;
delay (1000) ;
digitalWrite (L6, HIGH);

Vous le voyez, ce code est trés lourd et n'est pas pratique. Nous verrons plus loin comment faire en sorte de ’alléger. Mais avant
cela, un TP arrive...

Au fait, voici un exemple de ce que vous pouvez obtenir !

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

108/326

Nous allons terminer ce chapitre par un point qui peutétre utile, notamment dans certaines situations ou l'on veut ne pas arréter
le programme. En effet, sion veut faire clignoter une LED sans arréter I’exécution du programme, on ne peut pas utiliser la

fonction delay () quimet en pause le programme durant le temps défini.

Vous avez probablement remarqué, lorsque vous utilisez la fonction "delay()" tout notre programme s’arréte le temps d'attendre.

Dans certains cas ce n'est pas un probléme mais dans certains cas ¢a peut étre plus génant.

Imaginons, vous €tes en train de faire avancer un robot. Vous mettez vos moteurs a une vitesse moyenne, tranquille, jusqu'a ce
qu'un petit bouton sur l'avant soit appuyé (il clic lorsqu'on touche un mur par exemple). Pendant ce temps-la, vous décidez de
faire des signauxen faisant clignoter vos LED. Pour faire un joli clignotement, vous allumez une LED rouge pendant une seconde

puis I’éteignez pendant une autre seconde. Wila par exemple ce qu'on pourrait faire comme code

Code : C

void setup ()

{
pinMode (moteur, OUTPUT) ;
pinMode (led, OUTPUT) ;
pinMode (bouton, INPUT)

digitalWrite (moteur, HIGH); //on met le moteur en marche (en

admettant qu'il soit en marche a HIGH)
digitalWrite(led, LOW); //on allume la LED
}

void loop ()
{

if (digitalRead (bouton)==HIGH) //si le bouton est cliqué (on rentre

dans un mur)
{
digitalWrite (moteur, LOW); //on arréte le moteur
}
else //sinon on clignote
{
digitalWrite (led, HIGH) ;
delay (1000) ;
digitalWrite (led, LOW) ;
delay (1000) ;

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 109/326

& Attention ce code n'est pas du tout rigoureux voire faux dans son écriture, il sert juste a comprendre le principe !

Maintenant imaginez. Vous roulez, tester que le bouton n'est pas appuyé, donc faites clignoter les LED (cas du else). Le temps
que vous fassiez l'affichage en entier s'écoule 2 longues secondes ! Le robot a pu pendant cette ¢ternité se prendre le mur en
pleine poire et les moteurs continuent a avancer téte baissée jusqu'a fumer ! Ce n'est pas bon du tout !

Voici pourquoi la fonction millis() peut nous sauver.

Tout d'abord, quelques précisions a son sujet, avant d'aller s'en servir. A l'intérieur du cceur de la carte Arduino se trouve un
chronometre. Ce chrono mesure I'€coulement du temps depuis le lancement de 'application. Sa granularité (la précision de son
temps) est la milliseconde. La fonction millis() nous sert a savoir quelle est la valeur courante de ce compteur. Attention, comme
ce compteur est capable de mesurer une durée allant jusqu'a 50 jours, la valeur retournée doit étre stockée dans une variable de
type "long".

@ Clest bien gentil mais concrétement on l'utilise comment ?

Et bien c'est trés simple. On sait maintenant "lire 'heure". Maintenant, au lieu de dire "allume-toi pendant une seconde et ne fais
surtout rien pendant ce temps", on va faire un truc du genre "Allume-toi, fais tes petites affaires, vérifie I'heure de temps en
temps et siune seconde est écoulée, alors réagis !".

Voici le code précédent transformé selon la nouvelle philosophie :

Code : C

long temps; //variable qui stocke la mesure du temps
boolean etat led;

void setup ()

{

pinMode (moteur, OUTPUT) ;

pinMode (led, OUTPUT) ;

pinMode (bouton, INPUT);

digitalWrite (moteur, HIGH); //on met le moteur en marche
etat led = 0; // par défaut la LED sera éteinte
digitalWrite(led, etat led); //on éteint la LED

}

void loop ()
{
if (digitalRead (bouton)==HIGH) //si le bouton est cliqué (on rentre
dans un mur)
{
digitalWrite (moteur, LOW); //on arréte le moteur
}
else //sinon on clignote
{
//on compare 1'ancienne valeur du temps et la valeur sauvée
//si la comparaison (1'un moins 1'autre) dépasse 1000...
//...cela signifie qu'au moins une seconde s'est écoulée
if((millis() - temps) > 1000)
{
etat led = !etat led; //on inverse 1'état de la LED
digitalWrite(led, etat led); //on allume ou éteint
temps = millis(); //on stocke la nouvelle heure

}

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 110/326

Et voila, grace a cette astuce plus de fonction bloquante. L'état du bouton est vérifié trés fréquemment ce qui permet de s'assurer
que sijamais on rentre dans un mur, on coupe les moteurs tres vite. Dans ce code, tout s'effectue de maniére fréquente. En effet,
on ne reste jamais bloqué a attendre que le temps passe. A la place, on avance dans le programme et test souvent la valeur du
chronometre. Si cette valeur est de 1000 itérations supérieures a la demiére valeur mesurée, alors cela signifie qu'une seconde est
passée.

que 1000 millisecondes EXACTEMENT se sont écoulées, ce qui est trés peu probable (vous pourrez plus probablement

b Attention, au "if" de la ligne 25 ne faites surtout pas "millis() - temp == 1000". Cela signifierait que vous voulez vérifier
‘ mesurer plus ou moins mais rarement exactement)

Maintenant que vous savez maitriser le temps, vos programmes/animations vont pouvoir posséder un peu plus de "vie" en
faisant des pauses, des motifs, etc. Impressionnez-moi !

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 111/326

[TP] Feux de signalisation routiere

Vous voila arrivé pour votre premier TP, que vous ferezseul ! Je vous aiderai quand méme un peu. Le but de ce TP va étre de

réaliser un feu de signalisation routi¢re. Je vous donne en détail tout ce qu'il vous faut pour mener a bien cet objectif.

Ce dont nous avons besoin pour réaliser ces feux.
Le matériel

Le matériel est la base de notre besoin. On a déja utilisé 6 LED et résistances, mais elles étaient pour moi en l'occurrence toutes
rouges. Pour faire un feu routier, il va nous falloir 6 LED, mais dont les couleurs ne sont plus les mémes.

e LED :un nombre de 6, dont 2 rouges, 2 /orange et 2
e Résistors : 6 également, de la méme valeur que ceuxque vous avezutilisés.
e Arduino : une carte Arduino évidemment !

Le schéema

Clest le méme que pour le montage précédent, seul la couleur des LED change, comme ceci :

5y
Arduing
V3 &Y Win
Power
— RST D13 e 5y
— AREF D12 f—
Arduino on ==
D1ﬂ Y
D’EI Py
i AV Y
g D8 e
3 QTR TR TR
S D7 —_—I—N——-
e PN
= 06 A
—1 » 8 05 [———AWY
—_ Al D4 AN
=
—~ £ R
— a3 = D2 A
—_— A € YR L
—— A5 Do p—
GMND

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 112/326

Vous n'avez donc plus qu'a reprendre le dernier montage et changer la couleur de 4 LED, pour obtenir ceci :

EEEEEES S EEEESEESEE R

% Elifo-iic-o

I ¢ DN C DS S R R R R
ee——— - D D s % = oo

N'oubliez pas de tester votre matériel en chargeant un programme qui fonctionne ! Cela évite de s'acharner a faire un
nouveau programme quine fonctionne pas a cause d'un matériel défectueux. On est jamais sur de rien, croyez-moi !

Le but

Je l'ai dit, c'est de réaliser des feux de signalisation. Alors, vu le nombre de LED, vous vous doutez bien qu'il faut réaliser 2 feux.
Ces feuxdevront étre synchronisés. La encore, je vous ai préparé une belle image animée :

feux 1 feux 2

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 113/326

Le temps de la séquence
Vous allez mettre un délai de 3 secondes entre le feu vert et le feu orange. Un délai de 1 seconde entre le feu orange et le feu
rouge. Et un délai de 3 secondes entre le feu rouge et le feu vert.

Par ou commencer ?
D'abord, vous devez faire I'organigramme. Oui je ne vous le donne pas ! Ensuite, vous commencez un nouveau programme. Dans
ce programme, vous devez définir quelles sont les broches du micro-contréleur que vous utilisez. Puis définir sice sont des
entrées, des sorties, ou s'illy a des deux. Pour terminer, vous allez faire le programme complet dans la fonction qui réalise une
boucle.

C'est parti !

Allez, c'est parti ! A vous de m'épater. @ Vous avez théoriquement toutes les bases nécessaires pour réaliser ce TP. En plus on a
presque déja tout fait. Mince ,j'en ai trop dit...

Pendant ce temps, moi je vais me faire une raclette. @

Et voiciun résultat possible :

Fini !

Vous avez fini ? VWotre code ne fonctionne pas, mais vous avez eu beau cherché pourquoi, vous n'avez pas trouvé ? Tres bien.
Dans ce cas, vous pouvezlire la correction. Ceux qui n'ont pas cherché ne sont pas les bienvenus ici !

L'organigramme

Cette fois, lorganigramme a changé de forme, c'est une liste. Comment le lire ? De haut en bas ! Le premier élément du programme
commence apres le début, le deuxieéme élément, apres le premier, etc.

DEBUT

//premi€re partie du programme, on s'occupe principalement du deuxiéme feu
Allumer led rouge feux 1

Allumer led verte feux 2

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 114/326

Attendre 3 secondes

Eteindre led_verte feux 2

Allumer led jaune feux 2

Attendre 1 seconde

Eteindre led jaune_feux 2

Allumer led rouge feux 2

/*deuxieme partie du programme, pour l'instant : led rouge feux 1etled rouge feux 2 sont allumées; on éteint donc la
led rouge feux 1pourallumerlaled verte feux 1*/
Attendre 3 secondes

Eteindre led_rouge feux 1

Allumer led verte feux 1

Attendre 3 secondes

Eteindre led_verte feux 1

Allumer led jaune feux 1

Attendre 1 seconde

Eteindre led_jaune feux 1

Allumer led _rouge feux 1

FIN

Voila donc ce qu'il faut suivre pour faire le programme. Si vous avez trouvé comme ceci, c'est trés bien, sinon il faut s'entrainer car
c'est trés important d'organiser son code et en plus cela permet d'éviter certaines erreurs !

Voila le moment que vous attendeztous : la correction ! Alors, je préviens tout de suite, le code que je vais vous montrer n'est
pas absolu, on peut le faire de différentes maniéres

La fonction setup

Normalement ici aucune difficulté, on va nommer les broches, puis les placer en sortie et les mettre dans leur état de départ.
Secret (cliquez pour afficher)

Code : C

//définition des broches

const int led rouge feux 1
const int led jaune feux 1
const int led verte feux 1
const int led rouge feux 2
const int led jaune feux 2
const int led verte feux 2

I
~.

. N

I
o0 WN
~

~e

Il
~e o~

void setup ()
{
//initialisation en sortie de toutes les broches
pinMode (led rouge feux 1, OUTPUT);
pinMode (led jaune feux 1, OUTPUT)
pinMode (led verte feux 1, OUTPUT);
pinMode (led rouge feux 2, OUTPUT);
()
()

’

’

pinMode (led jaune feux 2, OUTPUT
pinMode (led verte feux 2, OUTPUT

’

//on initialise toutes les LED éteintes au début du programme
(sauf les deux feux rouges)

digitalWrite(led rouge feux 1, LOW);
digitalWrite(led jaune feux 1, HIGH);
digitalWrite (led verte feux 1, HIGH);
digitalWrite(led rouge feux 2, LOW);
digitalWrite(led jaune feux 2, HIGH);
digitalWrite(led verte feux 2, HIGH);

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 115/326

Vous remarquerez l'utilité d'avoir des variables bien nommées.
Le code principal

Sivous étes bien organisé, vous ne devriez pas avoir de probléme ici non plus!
Point trop de paroles, la solution arrive

Secret (cliquez pour afficher)

Code : C

void loop ()
{

// premiére séquence
digitalWrite (led rouge feux 1, HIGH);
digitalWrite(led verte feux 1, LOW);
delay (3000) ;

// deuxieme séquence
digitalWrite (led verte feux 1, HIGH);
digitalWrite(led jaune feux 1, LOW);
delay (1000) ;

// troisiéme séquence
digitalWrite(led jaune feux 1, HIGH);
digitalWrite(led rouge feux 1, LOW);
delay (1000) ;

J% =sscmm==== deuxieme partie du programme, on s'occupe du feux
numéro 2 ———--—————- =/

// premiéere séquence
digitalWrite (led rouge feux 2, HIGH);
digitalWrite(led verte feux 2, LOW);
delay (3000) ;

// deuxiéme séquence
digitalWrite (led verte feux 2, HIGH);
digitalWrite(led jaune feux 2, LOW);
delay (1000) ;

// deuxiéme séquence
digitalWrite(led jaune feux 2, HIGH);
digitalWrite(led rouge feux 2, LOW);
delay (1000) ;

J% ceccccoccosooo= le programme va reboucler et revenir au début

Si ¢a marche, tant mieux, sinon référez vous a la résolution des problémes en annexe du cours.

Ce TP est donc terminé, vous pouvez modifier le code pour par exemple changer les temps entre chaque séquence, ou bien méme

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 116/326

modifier les séquences elles-mémes, ...
Bon, c'é¢tait un TP gentillet. L’intérét est seulement de vous faire pratiquer pour vous "enfoncer dans le crane" ce que l'on a vu
jusqu'a présent.

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 117/326

Un simple bouton

Dans cette partie, vous allez pouvoir interagir de maniére simple avec votre carte. A la fin de ce chapitre, vous serez capable
d'utiliser des boutons ou des interrupteurs pour interagir avec votre programme.

Derriére ce titre trivial se cache un composant de base trés utile, possédant de nombreux détails que vous ignorez peut-&tre.
Commengons donc dés maintenant 'autopsie de ce dernier.

Vous le savez slirement déja, un bouton n'est jamais qu'un fil qui est connecté ou non selon sa position. En pratique, on en
repére plusieurs, qui différent selon leur taille, leurs caractéristiques électriques, les positions mécaniques possibles, etc.

Le bouton poussoir normalement ouvert (NO)

Dans cette partie du tutoriel, nous allons utiliser ce type de boutons poussoirs (ou BP). Ces derniers ont deux positions :

e -Relaché : le courant ne passe pas, le circuit est déconnecté ; on dit que le circuit est "ouvert".
e - Appuyé : le courant passe, on dit que le circuit est fermé.

Retenez bien ces mots de vocabulaire !

Habituellement le bouton poussoir a deux broches, mais en général ils en ont 4 reliées deux a deux.

Le bouton poussoir normalement fermé (NF)

Ce type de bouton est I'opposé du type précédent, c'est-a-dire que lorsque le bouton est reliché, il laisse passer le courant. Et
inversement :

e -Reléaché : le courant passe, le circuit est connecté ; on dit que le circuit est "fermé".
e - Appuyé : le courant ne passe pas, on dit que le circuit est ouvert.

Les interrupteurs
A la différence d'un bouton poussoir, l'interrupteur agit comme une bascule. Un appui ferme le circuit et il faut un second appui

pour 'ouvrir de nouveau. Il possede donc des états stables (ouvert ou fermé). On dit qu'un interrupteur est bistable. Vous en
rencontrez tous les jours lorsque vous allumez la lumicre @

Symbole
Le BP et l'interrupteur ne possedent pas le méme symbole pour les schémas électroniques. Pour le premier, il est représenté par
une barre qui doit venir faire contact pour fermer le circuit ou défaire le contact pour ouvrir le circuit. Le second est représenté

par un fil qui ouvre un circuit et qui peut bouger pour le fermer.

Voici leurs symboles, il est important de s'en rappeler :

—

—O0 O O

Bouton Poussoir NO Bouton Poussoir NF Interrupteur

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 118/326

Tension et courant

Voici maintenant quelques petites précisions sur les boutons :

e [orsqu'il est ouvert, la tension a ses bornes ne peut étre nulle (ou alors c'est que le circuit n'est pas alimenté). En
revanche, lorsqu'il est fermé cette méme tension doit étre nulle. En effet, auxbornes d'un fil la tension est de OV,

e Ensuite, lorsque le bouton est ouvert, aucun courant ne peut passer, le circuit est donc déconnecté. Par contre, lorsqu'il
est fermé, le courant nécessaire au bon fonctionnement des différents composants le traverse. Il est donc important de
prendre en compte cet aspect. Un bouton devant supporter deux ampeéres ne sera pas aussi gros qu'un bouton tolérant
100 amperes (et pas aussicher @)

Il est tres fréquent de trouver des boutons dans les starters kit. Souvent ils ont 4 pattes (comme sur

I'image ci-dessous). Sic'est le cas, sachez que les broches sont reli¢es deuxa deux. Cela signifie quelles

fonctionnent par paire. Il faut donc se méfier lorsque vous le brancher sinon vous obtiendrez le méme
comportement qu'un fil (si vous connectez deux broches reliés). Utilisez un multimétre pour déterminer ¢ |
A quels broches sont distinctes. ' L

Pour ne pas se tromper, on utilise en général deux broches qui sont opposées sur la diagonale du
bouton.

Voici maintenant un point trés important, soyez donc attentif car je vais vous expliquer le rdle d'une résistance de pull-up !

@ Clest quoi st'animal, le poule-eup ?

Lorsque l'on fait de I'électronique, on a toujours peur des perturbations (générées par plein de choses : des lampes a proximité,
un téléphone portable, un doigt sur le circuit, I'¢lectricité statique, ...). On appelle ¢a des contraintes de CEM. Ces perturbations
sont souvent inoffensives, mais perturbent beaucoup les montages électroniques. Il est alors nécessaire d'en prendre compte
lorsque l'on fait de I'électronique de signal. Par exemple, dans certains cas on peut se retrouver avec un bit de signal qui vaut 1 a
la place de 0, les données regues sont donc fausses.

Pour contrer ces effets nuisibles, ont place en série avec le bouton une résistance de pull-up. Cette résistance sert a "tirer" ("'to
pull" in english) le potentiel vers le haut (up) afin d'avoir un signal clair sur la broche étudiée.

Sur le schéma suivant, on voit ainsi qu'en temps normal le "signal" a un potentiel de 5V, Ensuite, lorsque l'utilisateur appuiera sur

le bouton une connexion sera faite avec la masse. On lira alors une valeur de OV pour le signal. Voici donc un deuxiéme intérét de
la résistance de pull-up, éviter le court-circuit qui serait généré a l'appui !

5

R1
10k
+5%
Sortie "signal” vers la broche 3

1)
21

1

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 119/326

Filtrer les rebonds

Les boutons ne sont pas des systémes mécaniques parfaits. Du coup, lorsqu'un appui est fait dessus, le signal ne passe pas
immédiatement et proprement de 5V a 0V, En l'espace de quelques millisecondes, le signal va "sauter" entre 5V et OV plusieurs
fois avant de se stabiliser. Il se passe le méme phénomeéne lorsque l'utilisateur relache le bouton. Ce genre d'effet n'est pas
désirable, car il peut engendrer des parasites au sein de votre programme (si vous voulez détecter un appui, les rebonds vont
vous en générer une dizaine en quelques millisecondes, ce qui peut-Etre trés génant dans le cas d'un compteur par exemple).

Voila un exemple de chronogramme relevé lors du relaichement d'un bouton poussoir :

Ua

rebonds

Pour atténuer ce phénomene, nous allons utiliser un condensateur en paralléle avec le bouton. Ce composant servira ici
"d'amortisseur” qui absorbera les rebonds (comme sur une voiture avec les cahots de la route). Le condensateur, initialement
chargé, va se décharger lors de I'appui sur le bouton. S'il y a des rebonds, ils seront encaissés par le condensateur durant cette
décharge. Il se passera le phénomeéne inverse (charge du condensateur) lors du relichement du bouton.

Ce principe est illustré a la figure suivante :

av

R1
10k
+5%

Sortie "signal" vers la broche 3

C1

= 10rF

Schéma résumé

En résumé, voila un montage que vous pourriez obtenir avec un bouton, sa résistance de pull-up et son filtre anti-rebond sur
votre carte Arduino :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 120/326

5V
_l Arduing1
V3 sv Vin
Power
— RST D13 [
— AREF D12
Arduino o P
Dip R
g
O
%‘ D7 sv
5 D6 P
r_-“ p——
— A 5o D5 | Ll R1
o 10k
— A1 D4 fo 5%
—_— A2 5 D3
=3 51
oa
—] a4 & D1 R
C1
— s Do = = 10nF
GMD

Comme expliqué précédemment, pour obtenir des signaux clairs et éviter les courts-circuits, on utilise des résistances de pull-up.
Cependant, ces derniéres existent aussi en interne du microcontrolleur de 'Arduino, ce qui évite d'avoir a les rajouter par nous
mémes par la suite. Ces derniéres ont une valeur de 20 kilo-Ohms. Elles peuvent étre utilisés sans aucune contraintes techniques.
Cependant, sivous les mettez en marche, il faut se souvenir que cela équivaut a mettre la broche a I'état haut (et en entrée
évidemment). Donc sivous repasseza un état de sortie ensuite, rappelez vous bien que tant que vous ne l'avez pas changée elle
sera a I'état haut.
Ce que je vient de dire permet de mettre en place ces derniéres dans le logiciel :

Code : C

const int unBouton = 2; //un bouton sur la broche 2

void setup ()
{
//on met le bouton en entrée
pinMode (unBouton, INPUT) ;
//on active la résistance de pull-up en mettant la broche a
1'état haut (mais cela reste toujours une entrée)
digitalWrite (unBouton, HIGH) ;
}

void loop ()
{

//votre programme

}

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 121/326

Schéma résumé

5V
_l Arduinol
V3 sv Vin
Power
— RST D13
— AREF D12
Arduino o
D10 ==
2
é D8
2 p7 —
=N g_ :
= P
| = [T LN >
—_— AD . B pg JEAM c
a B
=)
I’ L]
_— a2 2 v Vel LA
g '
—_— Az 5 LoL gl apd l
A & D1 ==
1
— A5 i e 1115
GMD

Pour cette partie, nous allons apprendre a lire I'€tat d'une entrée numérique. Tout d'abord, il faut savoir qu'une entrée numérique
ne peut prendre que deux états, HAUT (HIGH) ou BAS (LOW). L'état haut correspond a une tension de +5V sur la broche, tandis
que I'état bas est une tension de OV.

Dans notre exemple, nous allons utiliser un simple bouton. Dans la réalité, vous pourriez utiliser n'importe quel capteur qui
posséde une sortie numérique.

Nous allons donc utiliser :
e Un bouton poussoir (et une résistance de 10k de pull-up et un condensateur anti-rebond de 10nF)

e Une LED (et sa résistance de limitation de courant)
e [a carte Arduino

Voici maintenant le schéma a réaliser :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 122/326

Y
V4
V3 5v vin 2200 Q"
Power 5%
— RST D13 e AAA —
— AREF D12 [
Arduino on ==
D1 e
Dg PWWIM
H
S D8 f
=)
a D7 | 5Y
S pg oum 2
,_‘3 a
‘a0 WM =
-_— AQ 2 ps p— N
— Al D4 p— 10k %
- +5% =
o I D3 e, i
o
o
— 43 o D2
— s & D1 =
At o ci
% bo b-I —— 10nF Montage avec 1 bouton et 1 led
GMND
Schéma avec 1 bouton et 1 LED

Montage simple avec un bouton et une LED

Afin de pouvoir utiliser le bouton, il faut spécifier a Arduino qu'il y a un bouton de connecté sur une de ses broches. Cette
broche sera donc une entrée. Bien entendu, comme vous étes de bons éléves, vous vous souvenez que tous les paramétrages
initiaux se font dans la fonction setup(). Vous vous souvenez également que pour définir le type (entrée ou sortie) d'une
broche, on utilise la fonction : pinMode().

Notre bouton étant branché sur la pin 2, on écrira :

Code : C

pinMode (2, INPUT);

Pour plus de clarté dans les futurs codes, on considérera que l'on a déclaré une variable globale nommée "bouton" et ayant
la valeur 2. Comme ceci :

Code : C

const int bouton = 2;

void setup ()

www.siteduzero.com

http://arduino.cc/en/Reference/PinMode
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 123/326

pinMode (bouton, INPUT);

VWila, maintenant notre carte Arduino sait qu'il y a quelque chose de connecté sur sa broche 2 et que cette broche est configurée
en entrée.

Maintenant que le bouton est paramétré, nous allons chercher a savoir quel est son état (appuyé ou relaché).

e Stlestrelaché, la tension a ses bornes sera de +5V, donc un état logique HIGH.

e S'ilest appuyé, elle sera de 0V, donc LOW.
Un petit tour sur la référence et nous apprenons qu'il faut utiliser la fonction digitalRead() pour lire I'état logique d'une entrée
logique. Cette fonction prend un parameétre qui est la broche a tester et elle retourne une variable de type int.

Pour lire I'état de la broche 2 nous ferons donc :

Code : C

int etat;
void loop ()
{ etat = digitalRead(bouton); //Rappel : bouton = 2
if (etat == HIGH)
actionRelache(); //le bouton est relaché

else
actionAppui(); //le bouton est appuyé

présentes dans ce code, sivous le testezainsi, il ne fonctionnera pas. Pour ce faire, vous devrez créer les fonctions

A Observez dans ce code, on appelle deux fonctions qui dépendent de I'état du bouton. Ces fonctions ne sont pas
actionRelache () etactionAppui ().

Nous allons passer a un petit test, que vous allez faire. Moi je regarde !

But
L'objectif de ce test est assez simple : lorsque 'on appuie sur le bouton, la LED doit s'allumer. Lorsque l'on relache le bouton, la
LED doit s'éteindre. Autrement dit, tant que le bouton est appuyé, la LED est allumée.

Correction
Allez, c'est vraiment pas dur, en plus je vous donnais le montage dans la premiére partie...

Voici la correction :

e - Les variables globales

www.siteduzero.com

http://arduino.cc/en/Reference/DigitalRead
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 124/326

Code : C

const int bouton = 2; //le bouton est connecté a la broche 2 de la
carte Adruino

const int led = 13; //la LED a la broche 13

int etatBouton; //variable qui enregistre 1'état du bouton

e -La fonction setup()

Code : C

void setup ()

{
pinMode (led, OUTPUT); //la led est une sortie
pinMode (bouton, INPUT); //le bouton est une entrée

etatBouton = HIGH; //on initialise 1'état du bouton comme
"relaché"

}

e -La fonction loop()

Code : C

void loop ()
{
etatBouton = digitalRead(bouton); //Rappel : bouton = 2

if (etatBouton == HIGH) //test si le bouton a un niveau logique
HAUT

{
digitalWrite (led,HIGH); //la LED reste éteinte
}

else //test si le bouton a un niveau logique différent de HAUT
(donc BAS)

{

digitalWrite (led,LOW); //le bouton est appuyé, la LED est
allumée

}
}

J’espére que vous y étes parvenu sans trop de difficultés ! Si oui, passons a 'exercice suivant...

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 125/326

Nous allons maintenant faire un exemple d'application ensemble.

O Pour cet exercice, nous allons utiliser deuxboutons et quatre LEDs de n'importe quelles couleurs.

e les deuxboutons seront considérés actifs (appuyés) a I'état bas (0V) comme dans la partie précédente. Ils seront
connectés sur les broches 2 et 3 de 'Arduino.
e Ensuite, les 4 LEDs seront connectées sur les broches 10a 13 de I'Arduino.

Voila donc le montage a effectuer :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

126/326

1)
£ 2 &
—— Yo Y Y %
Power
— RST D13 AMN
—{ AREF D12 A
= PRI
Arduino o AN
P
D10 AN
Do oA
3
S 5v
€ D7 5V ,
. sy Schéma
= De
— 50 il
A a P R1 o 10k
b=
—_ a2 2 D3 =
(=)
-— A3 T D2
2 c2
— 10nF -
R«
_— AL Do p=— B1 B2
GMD

ouUtnpJy

avec 2 boutons et 4 LEDs

i

BARAS

. am O N

i

il b

www.siteduzero.com

T

Montage avec 2 boutons et 4 leds

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 127/326

Montage de l'exercice, avec deux boutons et quatre LEDs

Dans cet exercice, nous allons faire un mini-barregraphe. Un barregraphe est un afficheur qui indique une quantité, provenant
d'une information quelconque (niveau d'eau, puissance sonore, etc.), sous une forme lumineuse. Le plus souvent, on utilise des
LEDs alignées en guise d'affichage. Chaque LED se verra allumée selon un niveau qui sera une fraction du niveau total.

Par exemple, si je prends une information qui varie entre 0 et 100, chacune des 4 LED correspondra au quart du maximum de cette
variation. Soit 100/ 4 =25. En l'occurrence, l'information entrante c'est I'appui des boutons. Par conséquent un appui sur un
bouton allume une LED, un appui sur un autre bouton éteint une LED. En fait ce n'est pas aussi direct, il faut incrémenter ou
décrémenter la valeur d'une variable et en fonction de cette valeur, on allume telle quantité de LED.

Cahier des charges

La réalisation prévue devra :

e -posséder4 LED (ou plus pour les plus téméraires)
e -posséder 2 boutons : un qui incrémentera le nombre de LED allumées, l'autre qui le décrémentera

Vous devrez utiliser une variable qui voit sa valeur augmenter ou diminuer entre 1 et 4 selon l'appui du bouton d'incrémentation
ou de décrémentation.

programmation, je vous autorise a poursuivre la lecture qui vous expliquera pas a pas comment procéder pour arriver au

O Vous pouvez maintenant vous lancer dans l'aventure. Pour ceux qui se sentiraient encore un peu mal a l'aise avec la
résultat final.

Initialisation
Pour commencer, on créer et on initialise toutes les variables dont on a besoin dans notre programme :

Code : C

/* déclaration des constantes pour les noms des broches ; ceci selon
le schéma*/

const int btn minus = 2;

const int btn plus = 3;

const int led 0 = 10;

const int led 1 = 11;

const int led 2 = 12;

const int led 3 = 13;

/* déclaration des variables utilisées pour le comptage et le
décomptage */

int nombre led = 0; //le nombre qui sera incrémenté et décrémenté
int etat bouton; //lecture de 1'état des boutons (un seul a la fois
mais une variable suffit)

/* initilisation des broches en entrée/sortie */
void setup ()
{

pinMode (btn plus, INPUT) ;

pinMode (btn minus, INPUT);

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 128/326

pinMode
pinMode
pinMode
pinMode

led 0, OUTPUT);
led 1, OUTPUT) ;
)
)

’

led 2, OUTPUT
led 3, OUTPUT

PN

’

}

void loop ()
{

//les instructions de votre programme

}

Détection des différences appuyé/reliché

Afin de détecter un appui sur un bouton, nous devons comparer son état courant avec son état précédent. C'est-a-dire qu'avant
qu'il soit appuyé¢ ou relaché, on lit son état et on l'inscrit dans une variable. Ensuite, on relit sison état a changé. Sic'est le cas
alors on incrémente la variable nombre led.

Pour faire cela, on va utiliser une variable de plus par bouton :

Code : C

int memoire plus = HIGH; //état reldché par défaut
int memoire minus = HIGH;

Détection du changement d'état

Comme dit précédemment, nous devons détecter le changement de position du bouton, sinon on ne verra rien car tout se
passera trop vite.

Voila le programme de la boucle principale :

Code : C

void loop ()

{
//lecture de 1'état du bouton d'incrémentation
etat bouton = digitalRead(btn plus);

//Si le bouton a un état différent que celui enregistré ET que
cet état est "appuyé"
if ((etat bouton != memoire plus) && (etat bouton == LOW))
{
nombre led++; //on incrémente la variable qui indique combien
de LED devrons s'allumer

}

memoire plus = etat bouton; //on enregistre 1'état du bouton
pour le tour suivant

//et maintenant pareil pour le bouton qui décrémente
etat bouton = digitalRead(btn minus); //lecture de son état

//Si le bouton a un état différent que celul enregistré ET que
cet état est "appuyé"
if ((etat bouton != memoire minus) && (etat bouton == LOW))
{
nombre led--; //on décrémente la valeur de nombre led
}

memoire minus = etat bouton; //on enregistre 1'état du bouton

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 129/326

pour le tour suivant

//on applique des limites au nombre pour ne pas dépasser 4 ou 0
if (nombre led > 4)

{

nombre led = 4;
}
if (nombre led < 0)
{

nombre led = 0;

}

//appel de la fonction affiche() que 1'on aura créée

//on lui passe en parametre la valeur du nombre de LED a
éclairer

affiche (nombre led);

}

Nous avons terminé de créer le squelette du programme et la détection d’événement, il ne reste plus qu'a afficher le résultat du
nombre !

L'affichage

Pour éviter de se compliquer la vie et d'alourdir le code, on va créer une fonction d'affichage. Celle dont je viens de vous parler :
affiche (int le parametre). Cette fonction recoit un paramétre représentant le nombre a afficher.

A présent, nous devons allumer les LEDs selon la valeur regue. On sait que l'on doit afficher une LED lorsque l'on regoit le
nombre 1, 2 LEDs lorsqu'on regoit le nombre 2, ...

Code : C

void affiche(int valeur_ recue)

{
//on éteint toutes les LEDs
digitalWrite(led 0, HIGH);
digitalWrite(led 1, HIGH);
digitalWrite(led 2, HIGH);
digitalWrite(led 3, HIGH)

’

//Puis on les allume une a une
if (valeur recue >= 1)

{ digitalWrite(led 0, LOW);
if(valeur_recue >= 2)

{ digitalWrite(led 1, LOW);
if(valeur_recue >= 3)

{ digitalWrite(led 2, LOW);
if(valeur_recue >= 4)

{ digitalWrite(led 3, LOW);

}

Donc, sila fonction regoit le nombre 1, on allume la LED 1. Si elle regoit le nombre 2, elle allume la LED 1 et 2. Si elle recoit 3, elle
allume la LED 1, 2 et 3. Enfin, si elle regoit 4, alors elle allume toutes les LEDs.

Le code au grand complet :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 130/326

Secret (cliquez pour afficher)

Code : C

/* déclaration des constantes pour les nom des broches ; ceci
selon le schéma*/

const int btn minus = 2;

const int btn plus = 3;

const int led 0 = 10;

const int led 1 = 11;

const int led 2 = 12;

const int led 3 = 13;

/* déclaration des variables utilisées pour le comptage et le
décomptage */

int nombre led = 0; //le nombre qui sera incrémenté et décrémenté
int etat bouton; //lecture de 1'état des boutons (un seul a la
folis mais une variable suffit)

int memoire plus = HIGH; //état reldché par défaut
int memoire minus = HIGH;

/* initilisation des broches en entrée/sortie */

void setup ()

{
pinMode
pinMode
pinMode
pinMode
pinMode
pinMode

btn plus, INPUT);
btn minus, INPUT);
led 0, OUTPUT);
led 1, OUTPUT);
led 2, OUTPUT);
led 3, OUTPUT)

’

~ e~ o~~~ —~

}

void loop ()

{
//lecture de 1'état du bouton d'incrémentation
etat bouton = digitalRead(btn plus);

//S1i le bouton a un état différent que celuli enregistré ET que
cet état est "appuyé"
if ((etat bouton != memoire plus) && (etat bouton == LOW))
{
nombre led++; //on incrémente la variable qui indique
combien de LED devrons s'allumer

}

memoire plus = etat bouton; //on enregistre 1'état du bouton
pour le tour suivant

//et maintenant pareil pour le bouton qui décrémente

etat bouton = digitalRead(btn minus); //lecture de son état

//Si le bouton a un état différent que celul enregistré ET que
cet état est "appuyé"

if ((etat bouton != memoire minus) && (etat bouton == LOW))
{
nombre led--; //on décrémente la valeur de nombre led
}
memoire minus = etat bouton; //on enregistre 1'état du bouton

pour le tour suivant
//on applique des limites au nombre pour ne pas dépasser 4 ou

if (nombre led > 4)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 131/326

{

nombre led = 4;
}
if (nombre led < 0)
{

nombre led = 0;

}

//appel de la fonction affiche() que 1'on aura créée

//on lul passe en parametre la valeur du nombre de LED a
éclairer

affiche (nombre led);

}

void affiche (int valeur recue)

{
//on éteint toutes les leds
digitalWrite(led 0, HIGH);
digitalWrite(led 1, HIGH);
digitalWrite(led 2, HIGH):;
digitalWrite(led 3, HIGH)

’

//Puis on les allume une & une
if (valeur recue >= 1)

{ digitalWrite(led 0, LOW);
if(valeur_recue >= 2)

{ digitalWrite(led 1, LOW);
if(valeur_recue >= 3)

{ digitalWrite(led 2, LOW);
if(valeur_recue >= 4)

{ digitalWrite(led 3, LOW);
}

Une petite vidéo du résultat que vous devriez obtenir, méme si votre code est différent du mien :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 132/326

/\ Voici maintenant un sujet plus délicat (mais pas tant que ¢a ! @) qui demande votre attention.

Comme vous l'avez remarqué dans la partie précédente, pour récupérer I'état du bouton il faut surveiller régulicrement I'état de ce
demier. Cependant, sile programme a quelque chose de long a traiter, par exemple s'occuper de l'allumage d'une LED et faire une
pause avec delay() (bien que l'on puisse utiliser millis()), 'appui sur le bouton ne sera pas trés réactif et lent a la détente. Pour
certaines applications, cela peut géner.

Probléme : sil'utilisateur appuie et relache rapidement le bouton, vous pourriez ne pas détecter l'appui (si vous étes dans un
traitement long).

Solution : Utiliser le mécanisme d'interruption.

Dans les parties précédentes de ce chapitre, la lecture d'un changement d'état se faisait en comparant régulierement I'état du
bouton a un moment avec son état précédent. Cette méthode fonctionne bien, mais pose un probléme : I'appuine peut pas étre
détecté s'il est trop court. Autre situation, sil'utilisateur fait un appui trés long, mais que vous étes déja dans un traitement trés
long (calcul de la milliéme décimale de PI, soyons fous), le temps de réponse a l'appuine sera pas du tout optimal, l'utilisateur
aura une impression de lag (= pas réactif).

Pour pallier ce genre de probléme, les constructeurs de microcontrdleurs ont mis en place des systémes qui permettent de
détecter des éveénements et d’exécuter des fonctions dés la détection de ces derniers. Par exemple, lorsqu'un pilote d'avion de
chasse demande au si¢ge de s'¢jecter, le siege doit réagir au moment de l'appui, pas une minute plus tard (trop tard).

@ Qu'est-ce qu'une interruption ?

Une interruption est en fait un déclenchement qui arréte ’exécution du programme pour faire une tdche demandée. Par exemple,
imaginons que le programme compte jusqu'a l'infinie. Moi, programmeur, je veux que le programme arréte de compter lorsque
j'appuie sur un bouton. Or, il s'avére que la fonction qui compte est une boucle for(), dont on ne peut sortir sans avoir atteint
l'infinie (autrement dit jamais, en théorie). Nous allons donc nous tourner vers les interruptions qui, dés que le bouton sera
appuyé, interromprons le programme pour lui dire : "Arréte de compter, c'est l'utilisateur qui le demande !".

Pour résumer : une interruption du programme est générée lors d'un événement attendu. Ceci dans le but d'effectuer une tiche,
puis de reprendre 1'exécution du programme.

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 133/326

Arduino propose aussice genre de gestion d’événements. On les retrouvera sur certaines broches, sur des timers, des liaisons
de communication, etc.

Nous allons illustrer ce mécanisme avec ce qui nous concerne ici, les boutons. Dans le cas d'une carte Arduino UNO, on trouve
deuxbroches pour gérer des interruptions externes (quine sont pas dues au programme lui méme), la 2 et la 3. Pour déclencher
une interruption, plusieurs cas de figure sont possibles :

e LOW :Passage a I'état bas de la broche

e FALLING : Détection d'un front descendant (passage de I'état haut a I'état bas)
e RISING : Détection d'un front montant (pareil qu'avant, mais dans l'autre sens)
e CHANGE : Changement d'état de la broche

Autrement dit, s'il y a un changement d'un type énuméré au-dessus, alors le programme sera interrompu pour effectuer une
action.
Créer une nouvelle interruption

Comme d'habitude, nous allons commencer par faire des réglages dans la fonction setup(). La fonction importante a utiliser est
attachInterrupt (interrupt, function, mode).Elle accepte trois paramétres :

e -interrupt : qui est le numéro de la broche utilisée pour l'interruption (0 pour la broche 2 et 1 pour la broche 3)
e -function : quiest le nomde la fonction a appeler lorsque l'interruption est déclenchée
e -mode : quiest le type de déclenchement (cf. ci-dessus)

Sil'on veut appeler une fonction nommée Reagir () lorsque l'utilisateur appuie sur un bouton branché sur la broche 2 on fera :

Code : C

attachInterrupt (0, Reagir, FALLING) ;

O Vous remarquerez I'absence des parenthéses aprés le nomde la fonction "Reagir"

Ensuite, il vous suffit de coder votre fonction Reagir() un peu plus loin.

@ Attention, cette fonction ne peut pas prendre d'argument et ne retournera aucun résultat.

Lorsque quelque chose déclenchera l'interruption, le programme principal sera mis en pause. Ensuite, lorsque l'interruption aura
été exécutée et traitée, il reprendra comme sirien ne s'était produit (avec peut-étre des variables mises a jour).

Si je fais une partie entiére sur les interruptions, ce n'est pas que c'est difficile mais c'est surtout pour vous mettre en garde sur
certains points.

Tout d'abord, les interruptions ne sont pas une solution miracle. En effet, gardez bien en téte que leur utilisation répond a un

besoin justifié. Elles mettent tout votre programme en pause, et une mauvaise programmation (ce qui n'arrivera pas, je vous fais
confiance @) peut entrainer une altération de I'état de vos variables.

De plus, les fonctions delay() et millis() n'auront pas un comportement correct. En effet, pendant ce temps le programme principal

www.siteduzero.com

http://arduino.cc/en/Reference/AttachInterrupt
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 134/326

est compleétement stoppé, donc les fonctions gérant le temps ne fonctionneront plus, elles seront aussi en pause et laisseront la
priorité a la fonction d'interruption. La fonction delay() est donc désactivée et la valeur retournée par millis() ne changera pas.

Justifiezdonc votre choixavant d'utiliser les interruptions.

Et voila, vous savez maintenant comment donner de l'interactivité a ’expérience utilisateur. Vous avez pu voir quelques
applications, mais nul doute que votre imagination fertile va en apporter de nouvelles !

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 135/326

Afficheurs 7 segments

Vous connaissez les afficheurs 7 segments ? Ou alors vous ne savez pas que ¢a s'appelle comme ¢a ? Il s'agit des petites lumiéres
qui forment le chiffre 8 et qui sont de couleur rouge ou verte, la plupart du temps, mais peuvent aussi étre bleus, blancs, etc. On
en trouve beaucoup dans les radio-réveils, car ils servent principalement a afficher I'heure. Autre particularité, non seulement de
pouvoir afficher des chiffres (0 a 9), ils peuvent également afficher certaines lettre de l'alphabet.

Materiel

Pour ce chapitre, vous aurez besoin de :

Un (et plus) afficheur 7 segments (évidemment)

8 résistances de 3301}

Un (ou deux) décodeurs BCD 7 segments

Une carte Arduino ! Mais dans un premier temps on va d'abord bien saisir le truc avant de faire du code @

Nous allons commencer par une découverte de l'afficheur, comment il fonctionne et comment le branche-t-on. Ensuite nous
verrons comment l'utiliser avec la carte Arduino. Enfin, le chapitre suivant aménera un TP résumant les différentes parties vues.

Comme son nom l'indique, l'afficheur 7 segments posséde... 7 segments. Mais un segment c'est quoi au juste ? Et bien c'est une
portion de l'afficheur, qui est allumée ou éteinte pour réaliser I'affichage. Cette portion n'est en fait rien d'autre qu'une LED qui au
lieu d'étre ronde comme d'habitude est plate et encastré dans un boiter. On dénombre donc 8 portions en comptant le point de
l'afficheur (mais il ne compte pas en tant que segment a part entiére car il n'est pas toujours présent). Regardez a quoi ¢a
ressemble :

+
_— |
[ot o ey

Afficheur 7 segments

Des LED, encore des LED

Et des LED, ily en a ! Entre 7 et 8 selon les modeles (c'est ce que je viens d'expliquer), voir beaucoup plus, mais on ne s'y
attardera pas dessus.

Voiciun schéma vous présentant un modele d'afficheur sans le point (qui au final est juste une LED supplémentaire rappelez-
vous):

Voo
a R
€ 1 b
' ul
i
g
o
1 L 1
s G

1

Les interrupteurs a,b,c,d,e.f,g représentent les signaux pilotant chaque segments

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 136/326

Comme vous le voyez sur ce schéma, toutes les LED possédent une broche commune, reliée entre elle. Selon que cette broche
est la cathode ou I'anode on parlera d'afficheur a cathode commune ou... anode commune (vous suivez ?). Dans l'absolu, ils
fonctionnent de la méme fagon, seule la maniére de les brancher différe (actif sur état bas ou sur état haut).

Cathode commune ou Anode commune

Dans le cas d'un afficheur a cathode commune, toutes les cathodes sont reliées entre elles en un seul point lui-méme connecté a
la masse. Ensuite, chaque anode de chaque segment sera reliée a une broche de signal. Pour allumer chaque segment, le signal
devra étre une tension positive. En effet, sile signalest a 0, iln'y a pas de différence de potentiel entre les deuxbroches de la
LED et donc elle ne s'allumera pas !

Sinous sommes dans le cas d'une anode commune, les anodes de toutes les LED sont reliées entre elles en un seul point qui
sera connecté a l'alimentation. Les cathodes elles seront reliées une par une auxbroches de signal. En mettant une broche de
signal a 0, le courant passera et le segment en question s'allumera. Si la broche de signal est a I'état haut, le potentiel est le méme
de chaque c6té de la LED, donc elle est bloquée et ne s'allume pas !

Que l'afficheur soit a anode ou a cathode commune, on doit toujours prendre en compte qu'il faut ajouter une résistance de
limitation de courant entre la broche isolée et la broche de signal. Traditionnellement, on prendra une résistance de 330 ohms
pour une tension de +5V, mais cela se calcul (cf. chapitre 1, partie 2). Si vous voulez augmenter la luminosité, il suffit de diminuer
cette valeur. Siau contraire vous voulez diminuer la luminosité, augmenter la résistance.

Choix de l'afficheur
Pour la rédaction j'ai fait le choix d'utiliser des afficheurs a anode commune et ce n'est pas anodin. En effet et on I'a vu jusqu'a
maintenant, on branche les LED du +5V vers la broche de la carte Arduino. Ainsi, dans le cas d'un afficheur a anode commune,
les LED seront branchés d'un c6té au +5V, et de l'autre c6té auxbroches de signaux. Ainsi, pour allumer un segment on mettra la

broche de signal a 0 et on I'éteindra en mettant le signal a 1. On a toujours fait comme ¢a depuis le début, ¢a ne vous posera donc
aucun probléme.

Nous allons maintenant voir comment brancher l'afficheur a anode commune.

Présentation du boitier
Les afficheurs 7 segments se présentent sur un boitier de type DIP 10. Le format DIP régie I'espacement entre les différentes
broches du circuit intégré ainsi que d'autres contraintes (présence d'échangeur thermique etc...). Le chiffre 10 signifie qu'il

posséde 10 broches (5 de part et d'autre du boitier).

Voici une représentation de ce dernier (a gauche) :

| | | | ‘ NO. MANG960
1 Cathode E
2 | CathodeD AN
3 Com. Anode F B
4 Cathode C N N
5 | CalhodeD.P. X6 X
6 Cathode B F &

O Fi Cathode A N N

8 Com. Ancde @

M & e

12345 10 Cathode G

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

137/326

Voici la signification des différentes broches :

CORXINN B WD~

[

LED de la cathode E
LED de la cathode D
Anode commune des LED
LED de la cathode C
(facultatif) le point décimal.
LED de la cathode B
LED de la cathode A
Anode commune des LED
LED de la cathode F
LED de la cathode G

Pour allumer un segment c'est trés simple, il suffit de le relier a la masse !

@ Nous cherchons a allumer les LED de l'afficheur, il est donc impératif de ne pas oubliez les résistances de limitations de
courant !

Exemple

Pour commencer, vous allez tout d'abord mettre l'afficheur a cheval sur la plaque d'essai (breadboard). Ensuite, trouvez la broche
représentant l'anode commune et reliez la a la future colonne du +5V. Prochaine étape, mettre une résistance de 3 3(J{2 sur

chaque broche de signal. Enfin, reliez quelques une de ces résistances a la masse. Sitous se passe bien, les segments reliés a la
masse via leur résistance doivent s'allumer lorsque vous alimentez le circuit.

Voiciun exemple de branchement :

Ardunal

AN

Al

54

[11111
[

L]

Wi s
P
Arduino
=
g
=
H
GND

Dagital Input/Output

T Je i N [
s |= % i i

D13
k)
D11

=} L]

i g
i 4 8

[

ol

_—

ey
S—N Y

Lk

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

138/326

W ww W
-

BE B EE
m
"
B
Bl
E]

rr rr

W
o ww

Dans cet exemple de montage, vous verrez que tous les segment de l'afficheur s'allument ! Vous pouvez modifier le montage en

déconnectant quelques unes des résistance de la masse et afficher de nombreux caractéres.

Pensez a couper l'alimentation lorsque vous changer des fils de place. Les composants n'aiment pas forcément étre

(dé)branchés lorsqu'ils sont alimentés. Vous pourriez éventuellement leur causer des dommages.

Seulement 7 segments mais plein de caractére(s) !

Vous l'avez peut-étre remarqué avec "l'exercice” précédent, un afficheurs 7 segments ne se limite pas a afficher juste des chiffres.
Voici un tableau illustrant les caractéres possibles et quels segments allumés. Attention, il est possible qu'il manque certains

caractéres !

Caractére seg.A seg.B seg.C seg.D seg.E seg.F seg.G

0 X X X X X X
1 X X

2 X X X X

3 X X X X

4 X X X
5 X X X X
6 X X X X X
7 X X X

8 X X X X X X
9 X X X X X

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 139/326

A X X X X X X
b X X X X X
C X X X X

d X X X X X

E X X X X X
F X X X X
H X X X X X
1 X X

J X X X X

L X X X

0 X X X X
P X X X X X
S X X X X X
t X X X
U X X X X X

y X X X X X
° X X X X

Aidez vous de ce tableau lorsque vous aurez a coder l'affichage de caractéres ! @

Pour commencer, nous allons prendre en main un afficheur et lui faire s'afficher notre premier chiffre ! C'est assez simple et ne
requiert qu'un programme trés simple, mais un peu rébarbatif.

Je vais reprendre le schéma précédent, mais je vais connecter chaque broche de l'afficheur a une sortie de la carte Arduino.
Comme ceci :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 140/326

\ Anduirn]
W1 S win
Prswes
— RST 013 e
— AHEF D12 f—
Arduino o =
[e
o
R .
= oL
ﬂI:l."
T g oo = Ay i
— A D4 Ay A
”E oy 2 L] l._'l..rj'
—.A.]ﬁ"' oz
—_— " 0
— A m2
GHD
] U FE R R R EEEEE EEEEE R ER
L FEE R R EEEEE FEEEE EEEER
m—III-M-IIIIIIII
‘.I.I..-I-‘.I.I..-l;l.‘lluulllllllll
L T T B O AR e B O B R O
L O O O e tdlew e
LR OO A A O CEE RO RO R A I
(1]
= LR O O LR
i L LR LR
CRC A T LR
: LB
o LI
=
==+
=1

TEUENRJdE AAR

SAhREZTOD YA

Vous voyez donc que chaque LED de l'afficheur va étre commandée séparément les unes des autres. Il n'y a rien de plus a faire, si
ce n'est qu'a programmer...

L'objectif du programme va étre d'afficher un chiffre. Eh bien... c'est partit !

Quoi ?! Vous voulez de l'aide ? @ Ben je vous ai déja tout dit y'a plus qu'a faire. En plus vous avez un tableau avec lequel vous
pouvez vous aider pour afficher votre chiffre.

Cherchez, je vous donnerais la solution ensuite.

Secret (cliquez pour afficher)

Solution :
Code : C

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

141/326

/* On assigne

const int A = 2;
const int B = 3;
const int C = 4;
const int D = 5;
const int E = 6;
const int F = 7;
const int G 8;
//notez que 1'on

pouvez le rajouter si cela vous chante

void setup ()

{

ne gere pas 1'affichage du point,

chaque LED & une broche de 1'arduino */

mais vous

AA

//définition des broches en sortie

pinMode (A, OUTPUT) ;
pinMode (B, OUTPUT) ;
pinMode (C, OUTPUT) ;
pinMode (D, OUTPUT) ;
pinMode (E, OUTPUT) ;
pinMode (F, OUTPUT) ;
pinMode (G, OUTPUT) ;

//mise a 1'état HAUT de ces sorties pour éteindre les LED de

1'afficheur
digitalWrite
digitalWrite
digitalWrite
digitalWrite
digitalWrite
digitalWrite
digitalWrite

(A,
(B,
(C,
(D,
(E,
(F
(G

4

4

}

void loop ()
{
//affichage du
digitalWrite (A,
digitalWrite (B,
digitalWrite (
digitalWrite (
digitalWrite (
digitalWrite (
(

C,
D,
E,
F,
digitalWrite (G,

’

HIGH)
HIGH)
HIGH) ;
HIGH) ;

)

)

)

’

’

HIGH
HIGH
HIGH

’

’

chiffre 5,
LOW) ;
HIGH) ;
LOW) ;
LOW) ;
HIGH) ;
LOW) ;
LOW) ;

d'apres le tableau précédent

Vous le voyez par vous-méme, c'est un code hyper simple. Essayez de le bidouiller pour afficher des messages, par exemple,
en utilisant les fonctions introduisant le temps. Ou bien compléter ce code pour afficher tous les chiffres, en fonction d'une
variable définie au départ (ex: var = 1, affiche le chiffre 1 ; etc.).

Vous vous en doutez peut-Etre, lorsque l'on veut utiliser plusieurs afficheur il va nous falloir beaucoup de broches. Imaginons,
nous voulons afficher un nombre entre 0 et 99, il nous faudra utiliser deux afficheurs avec 2 % T =] broches connectées sur
la carte Arduino. Rappel : une carte Arduino UNO posséde... 14 broches entrées/sorties classiques. Sion ne fais rien d'autre que
d'utiliser les afficheurs, cela ne nous geéne pas, cependant, il est fort probable que vous serez amener a utiliser d'autres entrées
avec votre carte Arduino. Mais sion ne libére pas de place vous serezembété. Nous allons donc voir deuxtechniques qui, une
fois cunulées, vont nous permettre d'utiliser seulement 4 broches pour obtenir le méme résultat qu'avec 14 broches !

La premiére technique que nous allons utiliser met en ceuvre un circuit intégré. Vous vous souvenez quand je vous ai parlé de ces
bétes la ? Oui, c'est le méme type que le microcontréleur de la carte Arduino. Cependant, le circuit que nous allons utiliser ne fait
pas autant de choses que celui sur votre carte Arduino.

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 142/326

Décodeur BCD -> 7 segments

Clest le nomdu circuit que nous allons utiliser. Son réle est simple. Vous vous souvenezdes conversions ? Pour passer du
binaire au décimal ? Et bien c'est le moment de vous en servir, donc sivous ne vous rappelez plus de ¢a, allezrevoir un peu le
cours.

Je disais donc que son role est simple. Et vous le constaterez par vous méme, il va s'agir de convertir du binaire codé sur 4 bits
vers un "code" utilisé pour afficher les chiffres. Ce code correspond en quelque sorte au tableau précédemment évoqué.

Principe du décodeur

Sur un afficheur 7 segments, on peut représenter aisément les chiffres de 0 a 9 (et en insistant un peu les lettres de A a F). En
informatique, pour représenter ces chiffres, il nous faut au maximum4 bits. Comme vous €tes des experts et que vous avez bien
lu la partie sur le binaire, vous n'avez pas de mal a le comprendre. (0000), fera (0);¢ et (1111), fera (15);g ou (F);¢. Pour faire 9 par

exemple on utilisera les bits 1001.

En partant de se constat, des ingénieurs ont inventé un composant au douxnomde "décodeur" ou "driver" 7 segments. Il regoit
sur 4 broches les 4 bits de la valeur a afficher, et sur 7 autres broches ils pilotent les segments pour afficher ladite valeur. Ajouter
a cela une broche d'alimentation et une broche de masse on obtient 13 broches ! Et ce n'est pas fini. La plupart des circuits
intégrés de type décodeur possede aussiune broche d'activation et une broche pour tester si tous les segments fonctionnent.

Choix du décodeur

Nous allons utiliser le composant nommé MC14543B comme exemple. Tout d'abord, ouvrez ce lien dans un nouvel onglet, il vous
menera directement vers le pdf du décodeur :

Datasheet du MC14543B

Les datasheets se composent souvent de la méme maniére. On trouve tout d'abord un résumé des fonctions du produit puis un
schéma de son boitier. Dans notre cas, on voit qu'il est monté sur un DIP 16 (DIP : Dual Inline Package, en gros "boitier avec
deuxlignes de broches"). Sil'on continue, on voit la table de vérité faisant le lien entre les signauxd'entrées (INPUT) et les
sorties (OUTPUT). On voit ainsi plusieurs choses :

e Silon met la broche Bl (Blank, n°7) & un, toutes les sorties passent a zéro. En effet, comme son nom l'indique cette broche
sert a effacer I'état de l'afficheur. Sivous ne voulez pas l'utiliser il faut donc la connecter a la masse pour la désactiver.

e Les entrées A, B, Cet D (broches 5,3,2 et 4 respectivement) sont actives a I'état HAUT. Les sorties elles sont actives a
l'état BAS (pour piloter un afficheur a anode commune) OU HAUT selon I'¢tat de la broche PH (6). C'est la un gros
avantage de ce composant, il peut inverser la logique de la sortie, le rendant alors compatible avec des afficheurs a anode
commune (broche PH a I'état 1) ou cathode commune (Ph = 0)

La broche BI/RBO (n°4) sers a inhiber les entrées. On ne s'en servira pas et donc on la mettra a I'é¢tat HAUT (+5V)

e LD (n°l)sert a faire une mémoire de I'état des sorties, on ne s'en servira pas ici

e Enfin, les deuxbroches d'alimentation sont la 8 (GND/VSS, masse) et la 16 (VCC, +5V)

A N'oubliez pas de mettre des résistances de limitations de courant entre chaque segment et la broche de signal du
circuit!

Fonctionnement

@ Clest bien beau tout ¢a mais comment je lui dis au décodeur d'afficher le chiffre 5 par exemple ?

Il suffit de regarder le datasheet et sa table de vérité (c'est le tableau avec les entrées et les sorties). Ce que recoit le décodeur sur
ses entrées (A, B, C et D) défini les états de ses broches de sortie (a,b,c,d,e,f et g). Cest tout ! Donc, on va donner un code
binaire sur 4 bits a notre décodeur et en fonction de ce code, le décodeur affichera le caractére voulu. En plus le fabricant est
sympa, il met a disposition des notes d'applications a la page 6 pour bien brancher le composant :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-457255-1-quelques-bases-elementaires.html#ss_part_4
http://www.datasheetcatalog.org/datasheet2/4/09lwz6g28frlr15ayl6w0srxwz7y.pdf
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

MOTE: Bipolar ransistors may be added for gain (for Vpg = 10V or gy = 10 maA).

On voit alors qu'il suffit simplement de brancher la résistance entre le Cl et les segments et s'assurer que PH a la bonne valeur et

c'est tout !

En titre d'exercice afin de vous permettre de mieux comprendre, je vous propose de changer les états des entrées A, B, Cet D du

MC145436
OUTPUT [—0—"Wh—

Ph

T . .

= Vi

LIGHT EMITTING DIODE (LED) READOUT

COMMON
CATHODE LED

décodeur pour observer ce qu'il affiche.

Aprés avoir réaliser votre schéma, regarder s'il correspond avec celui présent dans cette balise secréte. Cela vous évitera peut-

&tre un mauvais branchement, qui sait ?

Secret (cliquez pour afficher)

COMMON
ANODE LED

MC145438
QUTPUT

= Ph

} Voo

— RST

— AREF

—_—
—

— 4T

3V3 sV

Arduino D11

nduy Sojeuy

Vin
Power
D13

D12

D10
D9
D&
D7

D&

Digital Input/Output

D5
D4
03
D2
D1

Do

GND

FAM
—

P
—

FAM
pre—

FAM
s

FAIM
p—

Arduing

Branchement du MC14543B

1]C 16
—_—2 15 pee AAN
— 3 14 o AN
— 4 13 f. AN
—_5 12 f— AN,
— 6 1 fom A
7 10 e AAAS
—l—] & 9 p— AN
(]}

Montage 7 segments, schéma

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 144/326

Gndvin 032 3% |

CUEE Lol [T

Montage 7

voici les signaux [CB D A]

segments, breadboard

La seconde technique est utilisée dans le cas ou l'on veut faire un affichage avec plusieurs afficheurs. Elle utilise le phénoméne
de persistance rétinienne. Pour faire simple, c'est grace a cela que le cinéma vous parait fluide. On change une image toutes les 40
ms et votre ceil n'a pas le temps de le voir, donc les images semble s'enchainer sans transition. Bref...

Ici, la méme stratégie sera utilisée. On va allumer un afficheur un certain temps, puis nous allumerons l'autre en éteignant le
premier. Cette action est assez simple a réaliser, mais nécessite I'emploi de deuxbroche supplémentaires, de quatre autres
composants et d'un peu de code. Nous I'é¢tudierons un petit peu plus tard, lorsque nous saurons géré un afficheur seul.

Nous y sommes, nous allons (enfin) utiliser la carte Arduino pour faire un affichage plus poussé qu'un unique afficheur. Pour
cela, nous allons trés simplement utiliser le montage précédent composé du décodeur BCD, de l'afficheur 7 segments et bien
entendu des résistances de limitations de courant pour les LED de l'afficheur. Je vais vous montrer deux techniques qui peuvent
étre employées pour faire le programme.

Initialisation

Vous avez I'habitude maintenant, nous allons commencer par définir les différentes broches d'entrées/sorties. Pour débuter (et
conformément au schéma), nous utiliserons seulement 4 broches, en sorties, correspondantes aux entrées du décodeur 7
segments.

Voici le code pouvant traduire cette explication :

Code : C

const int bit A =
const int bit B =
const int bit C =
const int bit D =

Ne Ne N

g w N
~

~.

void setup ()
{
//on met les broches en sorties
pinMode (bit A, OUTPUT);
pinMode (bit B, OUTPUT);
pinMode (bit C, OUTPUT);
pinMode (bit D, OUTPUT)

’

//on commence par écrire le chiffre 0, donc toutes les sorites a

www.siteduzero.com

http://fr.wikipedia.org/wiki/Persistance_r%C3%A9tinienne
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 145/326

1'état bas
digitalWrite (bit A, LOW)
digitalWrite(bit B, LOW);
()
()

digitalWrite(bit C, LOW
digitalWrite(bit D, LOW

Ce code permet juste de déclarer les quatre broches a utiliser, puis les affectes en sorties. On les met ensuite toutes les quatre a
zéro. Maintenant que l'afficheur est prét, nous allons pouvoir commencer a afficher un chiffre !

Programme principal

Sitout se passe bien, en ayant la boucle vide pour l'instant vous devriez voir un superbe 0 sur votre afficheur. Nous allons
maintenant mettre en place un petit programme pour afficher les nombres de 0a 9 en les incrémentant (a partir de 0) toutes les
secondes. C'est donc un compteur.

Pour cela, on va utiliser une boucle, qui comptera de 0 a 9. Dans cette boucle, on exécutera appellera la fonction affichage ()
qui s'occupera donc de l'affichage (belle démonstration de ce quiest une évidence @ ®).

Code : C

void loop ()
{
char i=0; //variable "compteur"
for (i=0; i<10; i++)
{
affichage(i); //on appel la fonction d'affichage
delay(1000); //on attend 1 seconde

Fonction d'affichage

Nous touchons maintenant au but ! Il ne nous reste plus qu'a réaliser la fonction d'affichage pour pouvoir convertir notre
variable en chiffre sur l'afficheur. Pour cela, il existe différentes solutions. Nous allons en voir ici une qui est assez simple a mettre
en ceuvre mais quinécessite de bien étre comprise.

Dans cette méthode, on va faire des opérations mathématiques (tout de suite c'est moins drole @) successives pour déterminer

quels bits mettre a I'état haut. Rappelez-vous, nous avons quatre broches a notre disposition, avec chacune un poids différent
(8,4,2 ¢t 1). En combinant ces différentes broches ont peu obtenir n'importe quel nombre de 0 a 15. Voici une démarche
mathématique envisageable :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

146/326

Mise a zéro de
toutes les broches

-

.-"'f .. :
Nombre >= & _>—oui
\ o
.-"'-'

Allumer le
sagment D

l

Mombre = nombre - 8

hd
Ty
- Mombre == 4 "ol Allumer le
o, -~ sagment C
HR'\-\. .-'""-'-'
Mombre = nombre - 4
Organigramme décodeur 7 segments
___.-"'!""x\
.-'""-' K‘“\-

Allumer la

it 5728

MNormbre = nombre - 2

Allumer le

ff”/ o _
‘*m’:“’"‘“ry_m segment A

Mombre = nombre - 1

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 147/326

On peut coder cette méthode de maniére assez simple et direct, en suivant cet organigramme :

Code : C

//fonction écrivant sur un seul afficheur

void afficher (char chiffre)

{
//on met a zéro tout les segments
digitalWrite (bit A, LOW);
digitalWrite (bit B, LOW);
digitalWrite (bit C, LOW);
digitalWrite (bit D, LOW);

//0n allume les bits nécessaires

if(chiffre >= 8)

{
digitalWrite(bit D, HIGH);
chiffre = chiffre - 8;

}

if(chiffre >= 4)

{
digitalWrite(bit C, HIGH);
chiffre = chiffre - 4;

}

if(chiffre >= 2)

{
digitalWrite(bit B, HIGH);
chiffre = chiffre - 2;

}

if(chiffre >= 1)

{
digitalWrite(bit A, HIGH);
chiffre = chiffre - 1;

Quelques explications s'imposent...

Le code gérant l'affichage réside sur les valeurs binaires des chiffres. Rappelons les valeurs binaires des chiffres :

Chiffre DCBA

0 (0000),
1 (0001),
2 (0010),
3 (0011),
4 (0100),
5 (0101),
6 (0110),
7 0111),
8 (1000),
9 (1001),

D'aprés ce tableau, sion veut le chiffre 8, on doit allumer le segment D, car 8 s'écrit (1000), ayant pour segment respectif DCBA.

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

148/326

Soit D=1, C=0, B=0 et A=0.

En suivant cette logique, on arrive a déterminer les entrées du décodeur qui sont a mettre a 'état HAUT ou BAS.

D'une maniére plus lourde, on aurait pu écrire un code ressemblant a ¢a :

Code : C

//fonction écrivant sur un seul afficheur

void afficher (char chiffre)

{

switch (chiffre)

{

case 0

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite (bit C,
digitalWrite (bit D,
break;

case 1

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite(bit C,
digitalWrite (bit D,
break;

case 2

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite (bit C,
digitalWrite (bit D,
break;

case 3

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite (bit C,
digitalWrite (bit D,
break;

case 4

digitalWrite
digitalWrite
digitalWrite
digitalWrite
break;

bit A,
bit B,
bit C,
bit D,

—~ e~~~

case 5

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite (bit C,
digitalWrite (bit D,
break;

case 6

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite(bit C,
digitalWrite (bit D,
break;

case 7/

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite (bit C,
digitalWrite (bit D,
break;

case 38

digitalWrite (bit A,
digitalWrite (bit B,
digitalWrite (bit C,
digitalWrite (bit D,
break;

case 9

digitalWrite (bit A,

www.siteduzero.com

LOW) ;
HIGH) ;
LOW) ;
LOW) ;

’

HIGH
HIGH
LOW) ;
LOW) ;

’

LOW) ;
LOW) ;
HIGH) ;
LOW) ;

HIGH) ;
LOW) ;
HIGH) ;
LOW) ;

LOW) ;
HIGH
HIGH
LOW) ;

’

’

— — ~

HIGH) ;
HIGH) ;
HIGH)
LOW) ;

’

Low
Low
LOwW
HIG

T~ — —
— ~
~

HIGH) ;

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 149/326

digitalWrite(bit B, LOW);
digitalWrite(bit C, LOW);
digitalWrite(bit D, HIGH);
break;

Mais, c'est bien trop lourd a écrire. Enfin c'est vous qui voyez. @

Maintenant que nous avons affiché un chiffre sur un seul afficheur, nous allons pouvoir apprendre a en utiliser plusieurs (avec
un minimum de composants en plus !). Comme expliqué précédemment, la méthode employée ici va reposer sur le principe de la
persistance rétinienne, qui donnera /'impression que les deux afficheurs fonctionnent en méme temps.

Problématique

Nous souhaiterions utiliser deux afficheurs, mais nous ne disposons que de seulement 6 broches sur notre Arduino, le reste des
broches étant utilisé pour une autre application. Pour réduire le nombre de broches, on peut d'ores et déja utilisé un décodeur
BCD, ce quinous ferait 4 broches par afficheurs, soit 8 broches au total. Bon, ce n'est toujours pas ce que l'on veut. Et sion
connectait les deuxafficheurs ensemble, en paralléle, sur les sorties du décodeur ? Oui mais dans ce cas, on ne pourrait pas
afficher des chiffres différents sur chaque afficheur. Tout a I'heure, je vous aiparlé de commutation. Oui, la seule solution qui
soit envisageable est d'allumer un afficheur et d'éteindre l'autre tout en les connectant ensemble sur le méme décodeur. Ainsiun
afficheur s'allume, il affiche le chiffre voulu, puis il s'éteint pour que l'autre puisse s'allumer a son tour. Cette opération est en fait
un clignotement de chaque afficheur par alternance.

Pour faire commuter nos deuxafficheurs, vous allezavoir besoin d'un nouveau composant, j'ai nommé : le transistor !

Transistor ? J'ai entendu dire qu'il y en avait plusieurs milliards dans nos ordinateurs ?

Et c'est tout a fait vrai. Des transistors, il en existe de différents types et pour différentes applications : amplification de
courant/tension, commutation, etc. répartis dans plusieurs familles. Bon je ne vais pas faire trop de détails, sivous voulezen
savoir plus, allez lire la premiére partie de ce cha[gitre (lien a rajouter, en attente de la validation du chapitre en question).

Le transistor bipolaire : présentation

Je le disais, je ne vais pas faire de détails. On va voir comment fonctionne un transistor bipolaire selon les besoins de notre
application, a savoir, faire commuter les afficheurs.

Un transistor, cela ressemble a ¢a :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 150/326

Photo d'un transistor

Pour notre application, nous allons utiliser des transistors bipolaires. Je vais vous expliquer comment cela fonctionne.

Déja, vous pouvez observer qu'un transistor posseéde trois pattes. Cela n'est pas de la moindre importance, au contraire il s'agit 1a

d'une chose essentielle ! En fait, le transistor bipolaire & une broche d'entrée (collecteur), une broche de sortie (émetteur) et une
broche de commande (base).

Son symbole est le suivant :

Collecteur

Base

Emetteur

. Ce symbole est celui d'un transistor bipolaire de type NPN. Il en existe qui sont de type PNP, mais ils sont beaucoup
moins utilisés que les NPN. Quoi qu'il en soit, nous n'utiliserons que des transistors NPN dans ce chapitre.
Fonctionnement en commutation du transistor bipolaire

Pour faire simple, le transistor bipolaire NPN (c'est la derniére fois que je précise ce point) est un interrupteur commandé en
courant.

Ceci est une présentation trés vulgarisée et simplifiée sur le transistor pour l'utilisation que nous en ferons ici. Les
& usages et possibilités des transistors sont trés nombreux et ils mériteraient un big-tuto a euxseuls ! Si vous voulez plus
d'informations, rendez-vous sur le cours sur I'€lectronique ou approfondissez en cherchant des tutoriels sur le web. @

Clest tout ce qu'il faut savoir, pour ce qui est du fonctionnement. Aprés, on va voir ensemble comment l'utiliser et sans le faire

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 151/326

griller ! @

Utilisation générale

On peut utiliser notre transistor de deux manieres différentes (pour notre application toujours, mais on peut bien évidemment
utiliser le transistor avec beaucoup plus de flexibilités). A commencer par le cablage :

I I,
> >
Interrupteur

L+

Ampoule

Transistor

Cablage du transistor en commutation

Dans le cas présent, le collecteur (qui est l'entrée du transistor) se trouve étre aprés 'ampoule, elle-méme connectée a
l'alimentation. L'émetteur (broche ou il y a la fléche) est relié a la masse du montage. Cette disposition est "universelle", on ne
peut pas inverser le sens de ces broches et mettre le collecteur a la place de I'émetteur et vice versa. Sans quoi, le montage ne
fonctionnerait pas.

Pour le moment, 'ampoule est éteinte car le transistor ne conduit pas. On dit qu'il est bloqué et empéche donc le courant J~de
circuler a travers l'ampoule. Soit f~ = (Jcar Jg = ().

A présent, appuyons sur l'interrupteur :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 152/326

e -~
Interrupteur —_
+ M
A
Ampoule
U + W
— Ly

Transistor

L'ampoule est allumée

Que se passe-t-il ? Eh bien la base du transistor, qui était jusqu'a présent "en l'air", est parcourue par un courant électrique. Cette
cause a pour conséquence de rendre le transistor passant ou saturé et permet au courant de s'établir a travers l'ampoule. Soit

I # Ocarig £ 0.

valeur, plus 'ampoule sera lumineuse. A l'inverse, une résistance trop forte sur la base du transistor pourra I'empécher

O La résistance sur la base du transistor permet de le protéger des courants trop forts. Plus la résistance est de faible
de conduire et de faire s'allumer I'ampoule. Rassurez _vous, je vous donnerais les valeurs de résistances a utiliser.

Utilisation avec nos afficheurs
Voyons un peu comment on va pouvoir utiliser ce transistor avec notre Arduino.
La carte Arduino est en fait le générateur de tension (schéma précédent) du montage. Elle va définir sisa sortie est de OV

(transistor bloqué) ou de 5V (transistor saturé¢). Ainsi, on va pouvoir allumer ou éteindre les afficheurs. Wila le modéle équivalent
de la carte Arduino et de la commande de l'afficheur :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 153/326

Carte Arduino

L=
5\ oy

Afficheur Anode commune

LA carte Arduino va soit mettre a la masse la base du transistor, soit la mettre & +5V. Dans le premier cas, il sera bloqué et
l'afficheur sera éteint, dans le second il sera saturé et l'afficheur allumé.

Ilen est de méme pour chaque broche de l'afficheur. Elles seront au +5V ou a la masse selon la configuration que l'on aura définie
dans le programme.
Schéma final

Et comme vous I'attendez surement depuis tout a 'heure, voici le schéma tant attendu (nous verrons juste aprés comment
programmer ce nouveau montage) !

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 154/326

Arduino’
EVEREY vin
Power 2.2k0 Q2
=] RST [ER — i
] AREF D12 o
f v
Arduino on =
P R ul
DY |
2 08 f—
=
g o7
2 1
= D6
E
—] 0 o ps [1 IC 16 oua o2
— D4 2 15 AMA |
. - -
Y g [E <N 3 14 AW ’ ' , ,
]
—_— a3 T D2 4 13 AN
2 —
: % [
—_ n = 5 12 —A . = L
R 4
—_ i po L 6 1 AN
g 10 RAAS _I L
8 9 e AAN

220 0hms

2*7 segments schéma

B AN WA
‘. FMI
SEEIEEH I

2%7

segments breadboard

Quelques détails techniques

e Dans notre cas (et je vous passe les détails vraiment techniques et calculatoires), la résistance sur la base du transistor
sera de 2 2 () (sivous n'avez pas cette valeur, elle pourra étre de 3, 3% X0, ou encore de 3, Of), voir méme de 4, Tk}
).

e Les transistors seront des transistors bipolaires NPN de référence 2N2222, ou bien un équivalent qui est le BC547. Il en
faudra deux donc.

e Le décodeur BCD est le méme que précédemment (ou équivalent).

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

155/326

Et avec tout ¢a, on est prét pour programmer ! @

Nous utilisons deuxnouvelles broches servant a piloter chacun des interrupteurs (transistors). Chacune de ces broches doivent
donc étre déclarées en global (pour son numéro) puis régler comme sortie. Ensuite, il ne vous restera plus qu'a alimenter chacun

des transistors au bon moment pour allumer l'afficheur souhaité. En synchronisant l'allumage avec la valeur envoyé¢ au décodeur,
vous afficherez les nombres souhaités comme bon vous semble. Wici un exemple de code complet, de la fonction setup() jusqu'a
la fonction d'affichage. Ce code est commenté et vous ne devriezdonc avoir aucun mal a le comprendre !

Ce programme est un compteur sur 2 segments, il compte donc de 0 a 99 et recommence au début dés qu'il a atteint 99. La vidéo

se trouve juste apres ce code.

Code : C

//définition des broches du décodeur 7 segments (vous pouvez changer

les numéros si bon vous semble)

const int bit A

const int bit B =
const int bit C
const int bit D =

//définitions des

’
’

’

g s w N

’

broches des transistors pour chaque afficheur

(dizaines et unités)

const int alim dizaine =
const int alim unite = 7;

void setup ()

{

6;

//Les broches sont toutes des sorties
pinMode (bit A, OUTPUT) ;

pinMode (bit B, OUTPUT)
pinMode (bit C, OUTPUT);
)

’

’

pinMode (alim dizaine, OUTPUT) ;
pinMode (alim unite, OUTPUT) ;

(
(
pinMode (bit D, OUTPUT
(
(

//Les broches sont toutes mises a 1'état bas
digitalWrite(bit A, LOW);

digitalWrite (bit
digitalWrite (bit

B, LOW);
C, LOW);
D, LOW);

digitalWrite(alim dizaine, LOW);
digitalWrite(alim unite, LOW);

(

(
digitalWrite (bit

(

(

}

void loop() //fonction principale

{

for (char i = 0; i<100; i++) //boucle qui permet de compter de 0 a

99 (= 100 valeurs)
{

afficher nombre (i) :;

du nombre a afficher

}
}

//fonction permettant d'afficher un nombre sur deux afficheurs
void afficher nombre (char nombre)

{

long temps; //variable utilisée pour savoir le temps écoulé...
char unite = 0, dizaine = 0; //variable pour chaque afficheur

if (nombre > 9) //si le nombre recu dépasse 9

{

dizaine = nombre / 10; //on récupére les dizaines

www.siteduzero.com

//appel de la fonction affichage avec envoi

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 156/326

unite = nombre - (dizaine*10); //on récupére les unités
temps = millis(); //on récupere le temps courant

// tant qu'on a pas affiché ce chiffre pendant au moins 500
millisecondes
// permet donc de pouvoir lire le nombre affiché
while((millis () -temps) < 500)
{

//on affiche le nombre

//d"abord les dizaines pendant 10 ms
digitalWrite(alim dizaine, HIGH); /* le transistor de 1'afficheur
des dizaines est saturé,
donc 1'afficheur est allumé */
afficher(dizaine); //on appel la fonction qui permet d'afficher
le chiffre dizaine
digitalWrite(alim unite, LOW); // 1'autre transistor
est bloqué et 1'afficheur éteint
delay (10);

//puis les unités pendant 10 ms
digitalWrite(alim dizaine, LOW); //on éteint le
transistor allumé
afficher (unite); //on appel la fonction qui permet d'afficher le
chiffre unité
digitalWrite(alim unite, HIGH); //et on allume 1'autre
delay (10);
}
}

//fonction écrivant sur un seul afficheur
//on utilise le méme principe que vu plus haut
void afficher (char chiffre)
{
if (chiffre >= 8)
{
digitalWrite (bit_D, HIGH) ;
chiffre = chiffre - 8;
}
if (chiffre >= 4)
{
digitalWrite (bit C, HIGH):;
chiffre = chiffre - 4;
}
if (chiffre >= 2)
{
digitalWrite (bit_B, HIGH) ;
chiffre = chiffre - 2;
}
if (chiffre >= 1)
{
digitalWrite (bit_A, HIGH) ;
chiffre = chiffre - 1;
}
}

//le code est terminé

Voila donc la vidéo présentant le résultat final :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 157/326

Comme vous l'avez vu juste avant, afficher de maniére alternative n'est pas trop difficile. Cependant, vous avez surement
remarqué, nous avons utilisé des fonctions bloquantes (delay). Si jamais un événement devait arriver pendant ce temps, nous
aurions beaucoup de chance de le rater car il pourrait arriver "pendant” un délai d'attente pour l'affichage.

Pour parer a cela, je vais maintenant vous expliquer une autre méthode, préférable, pour faire de l'affichage. Elle s'appuiera sur

l'utilisation de la fonction millis(), qui nous permettra de générer une boucle de rafraichissement de l'affichage. Wici un
organigramme qui explique le principe :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

g - b

158/326

Qui
Changer
l?
Temps ecoulé > 10 ms 7 o
Non
Afficher un chiffre
(dizaine OU unite)
L 4
Gérer les
evenements
(boutons...)

Comme vous pouvez le voir, il n'y a plus de fonction qui "attend". Tout se passe de maniére continue, sans qu'il n'y ai jamais de

Voici un exemple de programmation de la boucle principal (suivi de ses fonctions annexes) :

Code : C
bool afficheur = false; //variable pour le choix de 1'afficheur
// —-—— setup() ---

void loop ()
{

//gestion du rafraichissement

//si ca fait plus de 10 ms qu'on affiche,
(alternance unité <-> dizaine)
if((millis() - temps) > 10)
{

//on inverse la valeur de
(unité ou dizaine)

on change de 7 segments

"afficheur" pour changer d'afficheur

afficheur = l'afficheur;
//on affiche la valeur sur 1'afficheur
//afficheur : true->dizaines, false->unités

afficher nombre (valeur, afficheur);

www.siteduzero.com

http://www.siteduzero.com

Partie 2 :

[Pratique] Gestion des entrées / sorties

159/326

©

temps = millis(); //on met a jour le temps

}

//ici, on peut traiter les évenements (bouton...)

}

//fonction permettant d'afficher un nombre
//elle affiche soit les dizaines soit les unités
void afficher nombre (char nombre, bool afficheur)

{

char unite = 0, dizaine = 0;

if (nombre > 9)

dizaine = nombre / 10; //on recupere les dizaines
unite = nombre - (dizaine*10); //on recupere les unités
//si "

if (afficheur)

{
//on affiche les dizaines
digitalWrite(alim unite, LOW);
afficher (dizaine);
digitalWrite(alim dizaine, HIGH);
}

else // égal a : else if(!afficheur)
{
//on affiche les unités
digitalWrite(alim dizaine, LOW);
afficher (unite);
digitalWrite(alim unite, HIGH);

}

}

//fonction écrivant sur un seul afficheur
void afficher (char chiffre)
{
if(chiffre >= 8)
{
digitalWrite(bit D, HIGH);
chiffre = chiffre - 8;
}
if(chiffre >= 4)
{
digitalWrite (bit C, HIGH);
chiffre = chiffre - 4;
}
if(chiffre >= 2)
{
digitalWrite(bit B, HIGH);
chiffre = chiffre - 2;
}
if(chiffre >= 1)
{
digitalWrite(bit A, HIGH);
chiffre = chiffre - 1;
}
}

Sivous voulez tester le phénoméne de persistance rétinienne, vous pouvez changer le temps de la boucle de

rafraichissement (ligne 9). Si vous l'augmenter, vous commencerez a vois les afficheurs clignoter. En mettant une valeur

d'un peu moins de une seconde vous verrez les afficheurs s'illuminer 'un aprés l'autre.

Ce chapitre vous a appris a utiliser un nouveau moyen pour afficher des informations avec votre carte Arduino. L'afficheur peut
sembler peu utilisé mais en fait de nombreuses applications existe ! (chronométre, réveil, horloge, compteur de passage, afficheur
de score, etc.). Par exemple, il pourra vous servir pour déboguer votre code et afficher la valeur des variables souhaitées...

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 160/326

[TP] zParking

Cay est, une page se tourne avec l'acquisition de nombreuses connaissances de base. C'est donc l'occasion idéale pour faire un
(gros) TP qui utilisera I'ensemble de vos connaissances durement acquises.

Jaime utiliser les situations de la vie réelle, je vais donc en prendre une pour ce sujet. Je vous propose de réaliser la gestion d'un
parking souterrain... RDV aux consignes pour les détails.

Apres tant de connaissances chacune séparée dans son coin, nous allons pouvoir mettre en ceuvre tout ce petit monde dans un
TP traitant sur un sujet de la vie courante : les parkings !

Histoire

Le maire de zCity a décidé de rentabiliser le parking communal d'une capacité de 99 places (pas une de plus ni de moins). En effet,
chaque jour des centaines de zZTouristes viennent se promener en voiture et ont besoin de la garer quelque part. Le parking,
n'étant pour le moment pas rentable, servira a financer l'entretien de la ville. Pour cela, il faut rajouter au parking existant un
afficheur permettant de savoir le nombre de places disponibles en temps réel (le systéme de paiement du parking ne sera pas
traité). Il dispose aussi dans la ville des lumiéres vertes et rouges signalant un parking complet ou non. Enfin, I'entrée du parking
est équipée de deuxbarrieres (une pour l'entrée et l'autre pour la sortie). Chaque entrée de voiture ou sortie génére un signal pour
la gestion du nombre de places.

Le maire vous a choisi pour vos compétences, votre esprit de créativité et il sait que vous aimez les défis. Vous acceptez
évidemment en lui promettant de réussir dans les plus brefs délais !

Materiel

Pour mener a bien ce TP voici la liste des courses conseillée :

e Une carte Arduino (évidemment)

2 LEDs avec leur résistance de limitations de courant (habituellement 330 Ohms) -> Elles symbolisent les témoins
lumineux disposés dans la ville

2 boutons (avec 2 résistances de 10 kOhms et 2 condensateurs de 10 nF) -> Ce sont les "capteurs" d'entrée et de sortie.
2 afficheurs 7 segments -> pour afficher le nombre de places disponibles

1 décodeur 4 bits vers 7 segments

7 résistances de 330 Ohms (pour les 7 segments)

Une breadboard pour assembler le tout

Un paquet de fils

Votre cerveau et quelques doigts...

Voiciune vidéo pour vous montrer le résultat attendu par le maire :

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 161/326

Bon courage !

J’espére que tout s'est bien passé pour vous et que le maire sera content de votre travail. Vila maintenant une correction (parmi
tant d'autres, comme souvent en programmation et en ¢électronique). Nous commencerons par voir le schéma électronique, puis
ensuite nous rentrerons dans le code.

Le montage électronique est la base de ce qui va nous servir pour réaliser le systéme. Une fois qu'il est terminé on pourra l'utiliser
grace aux entrées/sorties de la carte Arduino et lui faire faire pleins de choses. Mais ¢a, vous le savez déja. Alors ici pas de grand
discours, il "suffit" de reprendre les différents blocs vus un parun dans les chapitres précédents et de faire le montage de fagon

simple.

Schéma
Je vous montre le schéma que jairéalisé, il n'est pas absolu et peut différer selon ce que vous avez fait, mais il reprend
essentiellement tous les "blocs" (ou mini montages électroniques) que l'on a vus dans les précédents chapitres, en les

assemblant de fagon logique et ordonnée :

Secret (cliquez pour afficher)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

162/326

L—

—

Archanal
| | - 5
™o W T T
Brees
— R B
— sarr o2
Arduing e = .,_”__4
=T =4 ,_"_“, i
M et —M—@]
gm g
y oF
|
o b b ——n
— Al b ' "
IC '
—N‘E m = ¥ 1 '5——~'W—I |_
_ui o g 1 " A | -
.
= M m—d| ti 13 Sad
o k] § 12 A s
-] ' n A = —
l ! 10 yre
] [.
— = |
IE O
L]
- & & & & - & ;j - # & @& @ @ & & & & S| F & F 8
.w l— L i i s s AR R
(] s sssesw il s sss s*REEBRENEEREEENEFFr s s F T T Iernew
ssfless s s wun R Y L R N "R R | iy e | 1 i
. R R R R R R R R L B B @ & & @ & & @ & & S| §F & §F 8

EBB::;

it
Ll
Ll
Tl
™
- &
- &
"

Procédure de montage

Voici l'ordre que j'ai suivi pour réaliser le montage :

e Débrancher la carte Arduino !

www.siteduzero.com

. w D D - w wlls = TR
" w EE s s R R R EEE SRR - ow sl & po———— e
T] I.i-l-i-l-i-l-i-i-ii-i&l-i-l-ﬁiiﬂaw;lnniil & & & PR s o o
-'j.“iﬂ.......... o ow sl s B EE s ow s
W 'I-I'l-'l-'l'l-'l-'l-'lr'l-'ﬁ'l--l- L II.I:'II. o omwow Wl . W LI
gI v e e
W W l‘.Ell EOEE ll-.-lf R R E R EE v w W
| e = |
W w w W W
W www L

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 163/326

Mettre les boutons

o Mettre les résistances de pull-up

o Puis les condensateurs de filtrage

o Ettirezdes fils de signauxjusqu'a la carte Arduino

o Enfin, vérifiez la position des alimentations (+5V et masse)
Mettre les LEDs rouge et verte avec leur résistance de limitation de courant et un fil vers Arduino
Mettre les décodeurs

o Relier les fils ABCD a Arduino

o Mettre au +5V ou a la masse les signauxde commandes du décodeur

o Mettre les résistances de limitations de courant des 7 segments

o Enfin, vérifier la position des alimentations (+5V et masse)
Puis mettre les afficheurs -> les relier entre le décodeur et leurs segments) -> les connecter au +5V
Amener du +5V et la masse sur la breadboard

Ce étant terminé, la maquette est fin préte a étre utilisée ! Evidemment, cela fait un montage (un peu) plus complet que les
précédents !

Nous allons maintenant voir une solution de programme pour le probléme de départ. La vbtre sera peut-&tre (voire surement)
différente, et ce n'est pas grave, un probléme n'exige pas une solution unique. Je n'ai peut-étre méme pas la meilleure solution !
(mais ¢a m'étonnerait @ Q)

Les variables utiles et déclarations

Tout d'abord, nous allons voir les variables globales que nous allons utiliser ainsi que les déclarations utiles a faire. Pour ma part,
juutilise six variables globales. Vous reconnaitrez la plupart d'entre elles car elles viennent des chapitres précédents.

Deux pour stocker I'état des boutons un coup sur l'autre et une pour le stocker de maniére courante
Un char stockant le nombre de places disponibles dans le parking

Un booléen désignant l'afficheur utilisé en dernier

Un long stockant l'information de temps pour le rafraichissement de l'affichage

Voici ces différentes variables commentées.
Secret (cliquez pour afficher)
Code : C

//les broches du décodeur 7 segments
const int bit A = 2;

const int bit B = 3;
const int bit C 4;
const int bit D = 5;

//les broches des transistors pour 1'afficheur des dizaines et
celui des unités

const int alim dizaine = 6;

const int alim unite = 7;

//les broches des boutons

const int btn entree = 8;

const int btn sortie = 9;

//les leds de signalements

const int led rouge = 12;

const int led verte = 11;

//1les mémoires d'état des boutons

int mem entree = HIGH;

int mem sortie = HIGH;

int etat = HIGH; //variable stockant 1'état courant d'un bouton

char place dispo = 99; //contenu des places dispos

bool afficheur = false;
long temps;

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 164/326

L'initialisation de la fonction setup()

Je ne vais pas faire un long baratin sur cette partie car je pense que vous serez en mesure de tout comprendre trés facilement car
iln'y a vraiment rien d'original par rapport a tout ce que l'on a fait avant (réglages des entrées/sorties et de leurs niveaux).

Secret (cliquez pour afficher)
Code : C

void setup ()
{

//Les broches sont toutes des sorties (sauf les boutons)
pinMode (bit A, OUTPUT);

pinMode (bit B, OUTPUT);
pinMode (bit C, OUTPUT);
pinMode (bit D, OUTPUT);
pinMode (alim dizaine, OUTPUT) ;
pinMode (alim unite, OUTPUT) ;
pinMode (led rouge, OUTPUT) ;
pinMode (led verte, OUTPUT) ;

pinMode (btn_entree, INPUT) ;
pinMode (btn sortie, INPUT) ;

//Les broches sont toutes mise a 1'état bas (sauf led rouge
éteinte)
digitalWrite(bit A, LOW

() ;
digitalWrite(bit B, LOW);
digitalWrite(bit C, LOW);
digitalWrite(bit D, LOW);

digitalWrite(alim dizaine, LOW);

digitalWrite(alim unite, LOW);

digitalWrite (led rouge, HIGH); //rappelons que dans cette
configuration, la LED est éteinte a 1'état HIGH

digitalWrite(led verte, LOW); //vert par défaut

temps = millis(); //enregistre "1'heure"

}

La boucle principale (loop)
Icise trouve la partie la plus compliquée du TP. En effet, elle doit s'occuper de gérer d'une part une boucle de rafraichissement de

l'allumage des afficheurs 7 segments et d'autre part gérer les événements. Rappelons-nous de l'organigramme vu dans la derniére
partie sur les 7 segments :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

165/326

(e)

‘_

Temps ecoulé > 10 ms ?

Non

Qui

Changer
d'afficheur

Afficher un chiffre
(dizaine OU unite)

Y

Gérer les
evenements
(boutons...)

Dans notre application, la gestion d'événements sera "une voiture rentre-t/sort-elle du parking ?" qui sera symbolisée par un
appuisur un bouton. Ensuite, il faudra aussi prendre en compte l'affichage de la disponibilité sur les LEDs selon si le parking est

complet ou non...
Voici une maniére de coder tout cela :

Secret (cliquez pour afficher)

Code : C

void loop ()
{

//si ca fait plus de 10 ms qu'on affiche,

segments

if((millis () - temps)

{

//on inverse la valeur de

(unité ou dizaine)

afficheur = l'afficheur;

//on affiche

afficher nombre (place dispo,

temps = millis () ;

}

www.siteduzero.com

> 10)

afficheur);
//on met & jour le temps

on change de 7

"afficheur" pour changer d'afficheur

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 166/326

//on test maintenant si les boutons ont subi un appuil (ou pas)
//d'"abord le bouton plus puis le moins
etat = digitalRead(btn_entree);

if ((etat != mem entree) && (etat == LOW))

place dispo += 1;

mem entree = etat; //on enregistre 1'état du bouton pour le tour
suivant

//et maintenant pareil pour le bouton qui décrémente
etat = digitalRead(btn_sortie);

if ((etat != mem sortie) && (etat == LOW))

place dispo -= 1;

mem sortie = etat; //on enregistre 1'état du bouton pour le tour
suivant

//on applique des limites au nombre pour ne pas dépasser 99 ou 0
if (place dispo > 99)

place dispo = 99;

if (place dispo < 0)

place dispo = 0;

//on met a jour 1'état des leds
//on commence par les éteindres
digitalWrite(led verte, HIGH);
digitalWrite (led rouge, HIGH);

if (place dispo == 0) //s'il n'y a plus de place
digitalWrite (led rouge, LOW);
else

digitalWrite(led verte, LOW);
}

Dans les lignes 4 a 11, on retrouve la gestion du rafraichissement des 7 segments. Ensuite, on s'occupe de réceptionner les
événements en faisant un test par bouton pour savoir sison état a changé et s'il est a I'état bas. Enfin, on va borner le nombre de
places et faire l'affichage sur les LED en conséquence. Vous voyez, ce n'était pas si difficile en fait ! Si, un peu quand méme, non
?

Il ne reste maintenant plus qu'a faire les fonctions d'affichages.

Les fonctions d'affichages

La encore, je ne vais pas faire de grand discours puisque ces fonctions sont exactement les mémes que celles réalisées dans la
partie concernant l'affichage sur plusieurs afficheurs. Si elles ne vous semblent pas claires, je vous conseille de revenir sur le
chapitre concernant les 7 segments.

Secret (cliquez pour afficher)

Code : C

//fonction permettant d'afficher un nombre
void afficher nombre (char nombre, bool afficheur)

{
long temps;

char unite = 0, dizaine = 0;

if (nombre > 9)

dizaine = nombre / 10; //on recupere les dizaines
unite = nombre - (dizaine*10); //on recupere les unités

if (afficheur)

{

//on affiche les dizaines
digitalWrite(alim unite, LOW);
digitalWrite(alim dizaine, HIGH);

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 167/326

afficher (dizaine);

}

else

{
//on affiche les unités
digitalWrite(alim dizaine, LOW);
digitalWrite(alim unite, HIGH);
afficher (unite) ;

}

}

//fonction écriveant sur un seul afficheur
void afficher (char chiffre)
{
//on commence par écrire 0, donc tout a 1'état bas
digitalWrite(bit A, LOW);
digitalWrite(bit B, LOW);
digitalWrite(bit C, LOW);
digitalWrite(bit D, LOW)

’

if(chiffre >= 8)
{
digitalWrite(bit D, HIGH);
chiffre = chiffre - 8;
}
if(chiffre >= 4)
{
digitalWrite(bit C, HIGH);
chiffre = chiffre - 4;
}
if(chiffre >= 2)
{
digitalWrite (bit B, HIGH);
chiffre = chiffre - 2;
}
if(chiffre >= 1)
{
digitalWrite(bit A, HIGH);
chiffre = chiffre - 1;
}
}

Etle code au complet

Sivous voulez tester I'ensemble de l'application sans faire d'erreurs de copier/coller, voici le code complet (qui doit fonctionner si
on considére que vous avez branché chaque composant au méme endroit que sur le schéma fourni au départ !)

Code : C

//les broches du décodeur 7 segments
const int bit A = 2;

const int bit B = 3;

const int bit C = 4;

const int bit D = 5;

//les broches des transistors pour 1'afficheur des dizaines et celui
des unités

const int alim dizaine = 6;

const int alim unite = 7;

//les broches des boutons

const int btn entree = 8;

const int btn sortie OF

//1les leds de signalements

const int led rouge = 12;

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 168/326

const int led verte = 11;

//les mémoires d'état des boutons

int mem entree = HIGH;

int mem sortie = HIGH;

int etat = HIGH; //variable stockant 1'état courant d'un bouton

char place dispo = 10; //contenu des places dispos
bool afficheur = false;
long temps;

void setup ()
{

//Les broches sont toutes des sorties (sauf les boutons)
pinMode (bit A, OUTPUT);

pinMode (bit B, OUTPUT

() ;
pinMode (bit C, OUTPUT);
pinMode (bit D, OUTPUT);
pinMode (alim dizaine, OUTPUT) ;
pinMode (alim unite, OUTPUT) ;
pinMode (btn_entree, INPUT) ;
pinMode (btn_ sortie, INPUT);
pinMode (led rouge, OUTPUT) ;
pinMode (led verte, OUTPUT)

’

//Les broches sont toutes mises a 1'état bas (sauf led rouge
éteinte)
digitalWrite (bit A, LOW

() ;
digitalWrite(bit B, LOW);

digitalWrite(bit C, LOW);

digitalWrite(bit D, LOW);

digitalWrite(alim dizaine, LOW);
digitalWrite(alim unite, LOW);
digitalWrite (led rouge, HIGH);
digitalWrite (led verte, LOW); //vert par défaut

temps = millis(); //enregistre "1'heure"

}

void loop ()
{

//si ca fait plus de 10 ms qu'on affiche, on change de 7 segments
if((millis() - temps) > 10)

{

//on inverse la valeur de "afficheur" pour changer d'afficheur
(unité ou dizaine)

afficheur = !'afficheur;

//on affiche

afficher nombre (place dispo, afficheur);

temps = millis(); //on met a jour le temps

}

//on test maintenant si les boutons ont subi un appuil (ou pas)
//d"abord le bouton plus puis le moins
etat = digitalRead(btn entree);

if ((etat != mem entree) && (etat == LOW))

place dispo += 1;
mem entree = etat; //on enregistre 1'état du bouton pour le tour
suivant

//et maintenant pareil pour le bouton qui décrémente
etat = digitalRead(btn_sortie);

if ((etat != mem sortie) && (etat == LOW))

place dispo -= 1;

mem sortie = etat; //on enregistre 1'état du bouton pour le tour
suivant

//on applique des limites au nombre pour ne pas dépasser 99 ou 0
if (place_dispo > 99)

place dispo = 99;

if (place dispo < 0)

place dispo = 0;

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 169/326

//on met a jour 1'état des leds
//on commence par les éteindre
digitalWrite(led verte, HIGH);
digitalWrite (led rouge, HIGH);

if (place dispo == 0) //s'il n'y a plus de place
digitalWrite (led rouge, LOW);
else

digitalWrite(led verte, LOW);
}

//fonction permettant d'afficher un nombre
void afficher nombre (char nombre, bool afficheur)
{

long temps;

char unite = 0, dizaine = 0;

if (nombre > 9)

dizaine = nombre / 10; //on récupéere les dizaines
unite = nombre - (dizaine*10); //on récupere les unités

if (afficheur)

{
//on affiche les dizaines
digitalWrite(alim unite, LOW);
digitalWrite(alim dizaine, HIGH);
afficher (dizaine) ;

}

else

{
//on affiche les unités
digitalWrite(alim dizaine, LOW);
digitalWrite(alim unite, HIGH);
afficher (unite) ;

}

}

//fonction écrivant sur un seul afficheur
void afficher (char chiffre)
{
//on commence par écrire 0, donc tout a 1'état bas
digitalWrite(bit A, LOW);
digitalWrite(bit B, LOW);
digitalWrite(bit C, LOW);
digitalWrite(bit D, LOW)

’

if(chiffre >= 8)

{
digitalWrite(bit D, HIGH);
chiffre = chiffre - 8;

}

if(chiffre >= 4)

{
digitalWrite(bit C, HIGH);
chiffre = chiffre - 4;

}

if(chiffre >= 2)

{
digitalWrite(bit B, HIGH);
chiffre = chiffre - 2;

}

if(chiffre >= 1)

{
digitalWrite(bit A, HIGH);
chiffre = chiffre - 1;

}

}

//Fin du programme

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 170/326

Bon, sivous ne comprenez pas tout du premier coup, c'est un petit peu normal, c'est en effet difficile de reprendre un programme
que l'on a pas fait soi-méme et ce pour diverses raisons. Le principal est que vous ayez cherché une solution par vous-méme et
que vous soyezarrivé a réaliser l'objectif final. Si vous n'avez pas réussimais que vous pensiezy étre presque, alors je vous
invite a chercher profondément le pourquoi du comment votre programme ne fonctionne pas ou pas entiérement, cela vous
aidera a trouver vos erreurs et a ne plus en refaire !

Il est pas magnifique ce parking ? J’espére que vous avez apprécié sa réalisation. Nous allons maintenant continuer a apprendre
de nouvelles choses, toujours plus sympas les unes que les autres. Un conseil, gardez votre travail quelques part au chaud,
vous pourriez 'améliorer avec vos connaissances futures !

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 171/326

Ajouter des sorties (numériques) a I'Arduimno

Dans ce chapitre "bonus", nous allons vous faire découvrir comment ajouter des sorties numériques a votre carte Arduino. Car
en effet, pour vos projets les plus fous, vous serez certainement amené a avoir besoin d'un grand nombre de sorties. Laily a
deuxchoix: le premier serait d'opter pour une carte Arduino qui dispose de plus de sorties, telle que la Arduino Mega ; mais dans
le cas ou vous aurezbesoin d'un giga super ultra grand nombre de sorties, méme la Mega ne suffira pas. Le deuxiéme choix c'est
donc... de lire ce chapitre. @

Ce que vous allez découvrir se révélera fort utile, soyez-en certains. Prenons l'exemple suivant : dans le cas ou vous devrez gérer
un grand nombre de LED pour réaliser un afficheur comme l'on en trouve parfois dans les vitrines de magasins, vous serez trés
vite limité par le nombre de sorties de votre Arduino. Surtout si votre afficheur contient plus de 1000 LED ! Ce chapitre va alors
vous aider dans de pareils cas, car nous allons vous présenter un composant spécialisé dans ce domaine : le 74HCS595.

Comme je viens de I’énoncer, il peut arriver qu'il vous faille utiliser plus de broches qu'il n'en existe sur un micro-contréleur, votre
carte Arduino en 'occurrence (ou plutot, 'ATMEGA328 présent sur votre carte Arduino). Dans cette idée, des ingénieurs ont
développé un composant que l'on pourrait qualifier de "décodeur série -> parallele". D'une maniére assez simple, cela consiste a
envoyer un octet de données (8 bits) a ce composant qui va alors décoder l'information regue et changer I'état de chacune de ses
sorties en conséquence. Le composant que nous avons choiside vous faire utiliser dispose de huit sorties de données pour une
seule entrée de données.

Concrétement, cela signifie que lorsque I'on enverra l'octet suivant : 00011000 au décodeur 74HC595, il va changer I'état (HAUT
ou BAS) de ses sorties. On verra alors, en supposant qu'ily a une LED de connectée sur chacune de ses sorties, les 2 LED du
"milieu" (géographiquement parlant) qui seront dans un état opposé de leurs congénéres. Ainsi, en utilisant seulement deux
sorties de votre carte Arduino, on peut virtuellement en utiliser 8 (voir beaucoup plus mais nous verrons cela plus tard).

Rentrons maintenant dans les entrailles de ce fameux 595. Pour cela nous utiliserons cette datasheet tout au long du tuto.

Brochage

Lisons ensemble quelques pages.

La premiere nous donne, de par le titre, la fonctionnalité du composant. Elle est importante car 'on sait & ce moment a quel
composant nous allons avoir affaire.

La seconde apporte déja quelques informations utiles outre la fonctionnalité. Au-dela du résumé qu'il est toujours bon de lire, les
caractéristiques du composant sont détaillées. On apprend également que ce composant peut fonctionner jusqu'a une fréquence
de 170MHz. Clest trés trés rapide par rapport a notre carte Arduino quitourne a 16MHz, nous sommes tranquilles de ce coté-la.
Continuons...

Clest la page 4 quinous intéresse vraiment ici. On y retrouve le tableau et la figure suivante :

www.siteduzero.com

http://www.datasheetcatalog.org/datasheet/philips/74AHC_AHCT595_1.pdf
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 172/326

PINNING
PIN SYMBOL DESCRIPTION
1,2,3,4,5,6,7and 15 Q4. Qy, Qg, Qy, Us, Qg Ty and Qg parallel data output
8 GND ground (0 V)
9 Q' serial data output
10 MR master reset (active LOW)
1 SHep shift register clock input
12 STep storage register clock input
13 DE output enable input (active LOW)
14 Dg serial data input
16 Ve DC supply voltage
11 |12
Oy E O EV[:C SHep STep
8
0 [2] 15] a ‘:; | 13
Q3 [3] 4] Dg a, |—
Bk 2
Qg 4 13| CE O —=
<[595 - M QZ BEL
a4 —
0e[€] 11] SHep ag |-
o [7] 0] i o6 [
! Q7 F—
GND [& | (9] ar Soptes
RAPASST
?m ?13
Fig.1 Pin configuration. Fig.2 Logic symbaol.

Brochage du 595

Avec ce dernier, on va pouvoir faire le lien entre le nomde chaque broche et leur rle. De plus, nous savons ou elles sont placées
sur le composant. Nous avons donc les sorties et la masse a gauche et les broches de commande a droite (plus la sortie QO0) et
l'alimentation.

Voyons maintenant comment faire fonctionner tout cela.

Fonctionnement

Comme tout composant électronique, il faut commencer par l'alimenter pour le faire fonctionner. Le tableau que nous avons vu
juste au-dessus nous indique que les broches d'alimentation sont la broche 16 (VCC) et la broche 8 (masse). Quelques pages
plus loin dans la datasheet, page 7 précisément, nous voyons la tension a appliquer pour l'alimenter : entre 2V et 5.5V (et
idéalement 5.0V). Une fois que ce dernier est alimenté, il faut se renseigner sur le role des broches pour savoir comment l'utiliser
correctement. Pour cela il faut revenir sur le tableau précédent et la table de vérité qui le suit.

On découvre donc que les sorties sont les broches de 1 a 7 et la broche 15 (On) ; 'entrée des données série, qui va commander

les sorties du composant, se trouve sur la broche 14 (serial data input) ; une sortie particuliére est disponible sur la broche 9
(serial data output, nous y reviendrons a la fin de ce chapitre).

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 173/326

Sur la broche 10 on trouve le Master Reset, pour mettre a zéro toutes les sorties. Elle est active a I'é¢tat BAS. Vous ferez alors
attention, dans le cas ou vous utiliseriez cette sortie, de la forcer a un état logique HAUT, en la reliant par exemple au +5V ou
bien a une broche de 'Arduino que vous ne mettrez a I'état BAS que lorsque vous voudrez mettre toutes les sorties du 74HC595
a lI'état bas. Nous, nous mettrons cette sortie sur le +5V.

La broche 13, output enable input, est un broche de sélection qui permet d'inhiber les sorties. En clair, cela signifie que lorsque

cette broche n'a pas I'état logique requis, les sorties du 74HC595 ne seront pas utilisables. Soit vous choisissez de l'utiliser en la
connectant a une sortie de I'Arduino, soit on la force a I'état logique BAS pour utiliser pleinement chaque sortie. Nous, nous la

relierons a la masse.

Deuxderniéres broches sont importantes. La n°11 et la n®12. Ce sont des "horloges". Nous allons expliquer quelle fonction elles
remplissent.

Lorsque nous envoyons un ordre au 74HC595, nous envoyons cet ordre sous forme d'états logiques qui se suivent. Par exemple
l'ordre 01100011. Cet ordre est composé de 8 états logiques, ou bits, et forme un octet. Cet ordre va précisément définir I'état de
sortie de chacune des sorties du 74HC595. Le probléme c'est que ce composant ne peut pas dissocier chaque bit qui arrive.

Prenons le cas des trois zEéros qui se suivent dans l'octet que nous envoyons. On envoie le premier 0, la tension sur la ligne est
alors de OV. Le second 0 est envoyé, la tension est toujours de OV, Enfin le dernier zéro est envoyé¢, avec la méme tension de OV
puis vient un changement de tension a 5V avec l'envoidu 1 quisuit les trois 0. Au final, le composant n'aura vu en entrée qu'un
seul 0 puisqu'iln'y a eu aucun changement d'état. De plus, il ne peut pas savoir quelle est la durée des états logiques qu'on lui
envoie. S'il le connaissait, ce temps de "vie" des états logiques qu'on lui envoie, il pourrait aisément décoder l'ordre transmis. En
effet, il pourrait se dire: "tiens ce bit (état logique) dépasse 10ms, donc un deuxieme bit 'accompagne et est aussiau niveau
logique 0". Encore 10ms d'écoulée et toujours pas de changement, eh bien c'est un troisiéme bit au niveau 0 qui vient d'arriver.
Clest dans ce cas de figure que l'ordre recu sera compris dans sa totalité par le composant.

Bon, eh bien c'est la qu'intervient le signal d'horloge. Ce signal est en fait la dans l'unique but de dire si c'est un nouveau bit qui
arrive, puisque le 74HC595 n'est pas capable de le voir tout seul. En fait, c'est trés simple, I'horloge est un signal carré fixé a une
certaine fréquence. A chaque front montant (quand le signal d'horloge passe du niveau 0 au niveau 1), le 74HC595 saura que sur
son entrée, c'est un nouveau bit qui arrive. Il pourra alors facilement voir s'il y a trois 0 qui se suivent. Ce chronogramme vous
aidera a mettre du concret dans vos idées :

4 =

HIGH= =\~ ===~ q----r----
SDA /

Low=-f=---

HIGH =

SCL
LOW - |

Source : Wikipédia -
SDA est le signal de données, l'ordre que 'on envoie ; SCL est le signal d'horloge

Pour cabler cette horloge, il faudra connecter une broche de 'Arduino a la broche numéro 11 du 74HC595. Ce signal travaillera
donc en corrélation avec le signal de données relié sur la broche 14 du composant.

La seconde horloge pourrait aussis'appeler "verrou". Elle sert a déterminer sile composant doit mettre a jour les états de ses
sorties ou non, en fonction de l'ordre qui est transmis. Lorsque ce signal passe de I'é¢tat BAS a I'¢tat HAUT, le composant change

les niveaux logiques de ses sorties en fonction des bits de données regues. En claiy, il copie les huit derniers bits transmis sur ses
sorties. Ce verrou se présente sur la broche 12.

Montage

Voici un petit montage a titre d'illustration que nous utiliserons par la suite. Je vous laisse faire le cablage sur votre breadboard
comme bon vous semble, pendant ce temps je vais aller me siroter un bon petit café.

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 174/326

Arduinol

u1 Vi Vin

74HC595 —=

— AREF D12
Q Vce —4 Arduino D11

Q2 Qo |3 D10
Q3 ps 14]

g
Ii*llﬁllﬁlﬁlllﬁi‘glg I

Q4 oF |13 g“"
Qs ST CP |12 %D?
Q6 SH_CP |11 — E‘DS
Q7 MR L0 —_— Al D4
8| cnp vl N —-A2:§ D3
— AT '1:;; D2
—_— 24 = D1
¢ — s oo f—
GND
I
Montage du 595 schéma
I el g
IR RN it | g
re— e e)
— = S] [
| - mmge 22 Ahas LR :-'i
| e a o s aaaa - e]
(R3S 133 BIEES '"'-”':f‘i
S FETNH FH==
pol iilec et] =

Montage du 595 breadboard

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 175/326

Montage du HC595 et 8 LEDs

Montage du HC595 et 8 LEDs (zoom)

Programmons pour utiliser ce composant
Envoyer un ordre au 74HCS595

Nous allons maintenant voir comment utiliser le composant de maniére logicielle, avec Arduino. Pour cela, je vais vous expliquer
la fagon de faire pour lui envoyer un ordre. Puis, nous créerons nous-mémes la fonction qui va commander le 74HC595.

Le protocole

Nous le verrons dans le chapitre sur la liaison série plus en détail, le protocole est en fait un moyen qui permet de faire
communiquer deux dispositifs. C'est une sorte de convention qui établit des régles de langage. Par exemple, si deux personnes
parlent deuxlangues différentes, elles vont avoir un mal fou a se comprendre l'une de l'autre. Eh bien le protocole sert a imposer
un langage qui leur permettra de se comprendre. En l'occurrence, il va s'agir de l'anglais.

Bon, cet exemple n'est pas parfait et a ses limites, c'est avant tout pour vous donner une vague idée de ce qu'est un protocole.
Comme je vous laidit, on en reparlera dans la partie suivante.

Nous l'avons vu tout a l'heure, pour envoyer un ordre au composant, il faut lui transmettre une série de bits. Autrement dit, il faut
envoyer des bits les uns apres les autres sur la méme broche d'entrée. Cette broche sera nommée "data".

Ensuite, rappelez-vous, le composant a besoin de savoir quand lire la donnée, quand est-ce qu'un nouveau bit est arrivé ? Clest
donc le r6le de I'horloge, ce que je vous expliquais plus haut. On pourrait s'imaginer qu'elle dit au composant : " Top ! tu peux lire
la valeur car c'est un autre bit qui arrive sur ton entrée ! ".

Enfin, une troisi¢éme broche ou 'on va amener 'horloge de verrou sert a dire au composant : " Nous sommes en train de mettre a
jour la valeur de tes sorties, alors le temps de la mise a jour, garde chaque sortie a son état actuel ". Quand elle changera d'état,
en passant du niveau BAS au niveau HAUT (front montant), cela donnera le "top" au composant pour qu'il puisse mettre & jour
ses sorties avec les nouvelles valeurs.

Si jamais vous voulez économiser une broche sur votre Arduino, I'horloge de verrou peut étre reliée avec I'horloge de
données. Dans ce cas l'affichage va "scintiller" lors de la mise a jour car les sorties seront rafraichies en méme temps
que la donnée arrive. Ce n'est pas génant pour faire de l'affichage sur des LEDs mais ¢a peut I'étre beaucoup plus sion
aun composant quiréagit en fonction du 595.

Création de la fonction d'envoi

Passons a la création de la fonction d'envoides données. Cest avec cette fonction que nous enverrons les ordres au 74HC595,
pour lui dire par exemple d'allumer une LED sur sa sortie 4. On va donc faire un peu de programmation, aller zou !

www.siteduzero.com

http://uploads.siteduzero.com/files/406001_407000/406175.jpg
http://uploads.siteduzero.com/files/406001_407000/406176.jpg
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 176/326

Commencons par nommer judicieusement cette fonction : envoi ordre ().

Cette fonction va prendre quatre parametres. Le premier sera le numéro de la broche de données. Nous I’appellerons "dataPin".
Le second sera similaire puisque ce sera le numéro de la broche d'horloge. Nous l'appellerons "clockPin". Le troisi¢me sera le
"sens" d'envoides données, je reviendrai la-dessus ensuite. Enfin le dernier parametre sera la donnée elle-méme, donc un char
(sur 8 bits, exactement comme l'ordre qui est & envoyer), que nous appellerons "donnee". Le prototype de la fonction sera alors
le suivant :

Code : C

void envoi ordre(int dataPin, int clockPin, boolean sens, char
donnee)

Le code de la fonction ne sera pas trés compliqué. Comme expliqué plus tot, il suffit de générer une horloge et d'envoyer la
bonne donnée pour que tout se passe bien.

Le 74HC595 copie le bit envoyé dans sa mémoire lorsque le signal d'horloge passe de 0 a 1. Pour cela, il faut donc débuter le
cycle par une horloge a 0. Ensuite, nous allons placer la donnée sur la broche de donnée. Enfin, nous ferons basculer la broche
d'horloge a I'état haut pour terminer le cycle. Nous ferons ¢a huit fois pour pouvoir envoyer les huit bits de I'octet concerné
(loctet d'ordre). Schématiquement le code serait donc le suivant :

Code : C

for (int i=0; i<8; i++) //on va parcourir chaque bit de 1'octet

{
//départ du cycle, on met 1'horloge a 1'état bas

digitalWrite (clockPin, LOW) ;
//on met le bit de donnée courant en place
digitalWrite(dataPin, le bit a envoyer);
//enfin on remet 1'horloge a 1'état haut pour faire prendre en
compte ce dernier et finir le cycle
digitalWrite (clockPin, HIGH) ;
} //et on boucle 8 fois pour faire de méme sur chaque bit de
1'octet d'ordre

Envoyer un char en tant que donnée binaire

Maintenant que l'on a défini une partie de la fonction envoi ordre (), il vanous rester un léger probléme a régler : envoyer
une donnée de type char en tant que suite de bit (ou donnée binaire).

Prenons un exemple : le nombre 231 s'écrit aussi sous la forme 11100111 en base 2 (et oui, c'est le moment de se rappeler ce que
l'on a vu ici @). Seulement, en voulant envoyer ce nombre sur la broche de donnée pour commander le 74HC595, cela ne

marchera pas d'écrire :

Code : C

digitalWrite (dataPin, 231);

En faisant de cette facon, la carte Arduino va simplement comprendre qu'il faut mettre un état HAUT (car 231 est différent de 0)
sur sa broche de sortie que 'on a nommée dataPin. Pour pouvoir donc envoyer ce nombre sous forme binaire, il va falloir
ajouter a la fonction que 'on a créé un morceau de code supplémentaire.

Ce que nous allons va faire va étre une vraie boucherie : on va découper ce nombre en huit tranches et envoyer chaque morceau
un parun sur la sortie dataPin.

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-559277-1-les-bases-du-comptage-2-10-16.html
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 177/326

Pour découper ce nombre, ¢a va pas étre de la tarte... euh... je m'égare. @ On va utiliser une technique qui se nomme, tenez-

vous bien, le masquage. On va en fait utiliser un masque quiva cacher la véritable valeur du nombre 231. Bon bon, je vous
explique.

Tout d'abord, on va considérer que le nombre 231 est vu sous sa forme binaire, qui je le rappel est 11100111, par votre carte
Arduino. Donc, lorsque l'on va passer en paramétre donnee le nombre 231, le programme verra la suite de 1 et de 0: 11100111.
Jusque-la, rien de bien sorcier.

VWila donc notre suite de 1 et de 0 que I'on va devoir découper. Alors, il n'existe pas de fonction toute préte spécialement congue
pour découper un nombre binaire. Non, ¢a va étre a nous de faire cela. Et c'est pourquoi je vous parlais du masquage. Cette
technique ne porte pas son nompar hasard, en effet, nous allons réellement utiliser un masque. Quelques précisions s'imposent,
je le sens bien.

Reprenons notre suite binaire :

Notre objectif étant d'envoyer chaque bit un parun, on va faire croire a I'Arduino que cette suite n'est composée que d'un seul
bit. En clair, on va cacher les 7 autres bits en utilisant un masque :

Ce qui, au final, donnera :

H

L'Arduino ne verra donc qu'un seul bit.
Et les autres, il les voit pas, comment on peut envoyer les 8 bits alors ?

Bien sir, les autres, 'Arduino ne les voit pas. C'est pourquoi l'on va faire évoluer le masque et révéler chaque bit un par un. En
faisant cela huit fois, on aura envoyé les 8 bits a la suite :

1!

On peut aussi faire évoluer le masque dans le sens opposé :

1

—_—

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 178/326

L'étape quisuit est donc d'identifier le bit a envoyer en premier. C'est 1a que rentre en jeu le paramétre sens. On a le choix
d'envoyer soit le bit de poids fort (on l'appelle MSB, Most Significant Bit) en premier et finir par le bit de poids faible (Less
Significant Bit, LSB) ; soit dans le sens opposé, du LSB vers le MSB. On parle alors d'envoi MSB First (pour "bit de poids fort
en premier") ou LSB First.

A présent, voyons comment appliquer la technique de masquage que je viens de vous présenter

Les masques en programmation
Maintenant que vous connaissez cela, nous allons pouvoir voir comment isoler chacun des bits pour les envoyer un par un.

En programmation, il est évident que I'on ne peut pas mettre un masque papier sur les bits pour les cacher. @ Il existe donc un

moyen de les cacher. Cela va faire appel a la logique binaire. Nous n'entrerons pas dans le détail, mais sachez que nous allons
employer des opérateurs logiques. Il en existe plusieurs, dont deux trés utilisés, méme dans la vie courante, l'opérateur ET et OU.

Commengons par l'opérateur logique ET (je vous laisse regarder le OU tout seul, nous n'en aurons pas besoin ici). Il s'utilise avec
le symbole & que vous trouverez sous la touche 1 au-dessus de la lettre "a" sur un clavier azerty.

Pour envoyer le premier bit de notre donnée, nous allons effectuer le masquage avec cet opérateur logique dont la table de vérité
se trouve étre la suivante :

Table de vérité du ET

Bit1 Bit2 Résultat

0 1 0
1 0 0
1 1 1

@ Je ne comprends pas trop ol tu veux en venir ?

Je vais vous expliquer.

Pour faire le masquage, on va faire une opération avec ce fameux ET logique. Il s'agit de la méme chose que sil'on additionnait
deuxnombres ensemble, ou sion les multipliait. Dans notre cas I'opération est "un peu bizarre". Disons que c'est une opération
évoluée.

Cette opération va utiliser deuxnombres : le premier on le connait bien, il s'agit de la suite logique 11100111, quant au second, il
s'agira du masque. Pour l'instant, vous ne connaissez pas la valeur du masque, qui sera lui aussisous forme binaire. Pour définir
cette valeur, on va utiliser la table de vérité précédente.

Afin que vous ne vous perdiez pas dans mes explications, on va prendre pour objectif d'envoyer le bit de poids faible de notre
nombre 11100111 (celui tout a droite).

Le code qui suit est un pseudo-code, mis sous forme d'une opération mathématique telle que l'on en ferait a I'école :

Code : C

11100111 (donnée a transmettre)
& 00000001 (on veut envoyer uniquement le bit de poids faible)

00000001 (donnée a transmettre au final) -> soit 1

Pour comprendre ce qui vient de se passer, il faut se référer a la table de vérité de l'opérateur ET : on sait que lorsque l'on fait 1 et
0 le résultat est 0. Donc, pour cacher tous les bits du nombre a masquer, il n'y a qu'a mettre que des 0 dans le masque. La,

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 179/326

I'Arduino ne verra que le bit 0 puisque le masque aura caché au complet le nombre du départ.
On sait aussique 1 ET 1 donne 1. Donc, lorsque I'on voudra montrer un bit a 'Arduino, on va mettre un 1 dans le masque, a
I'emplacement du bit qui doit étre montré.

Pour monter ensuite le bit supérieur au bit de poids faible, on procede de la méme maniére :

Code : C

11100111 (donnée a transmettre)
& 00000010 (on veut envoyer uniquement le deuxieme bit)

00000010 (donnée a transmettre au final) -> soit 1

Pour le quatrieme bit en partant de la droite :

Code : C

11100111 (donnée a transmettre)
& 00001000 (on veut envoyer uniquement le quatrieme bit)

00000000 (donnée a transmettre au final) -> soit O

Dans le cas ou vous voudriez montrer deux bits a 'Arduino (ce quin'a aucun intérét dans notre cas, je fais ¢a juste pour vous
montrer) :

Code : C

11100111 (donnée a transmettre)
& 01000100 (on veut envoyer uniquement le quatrieme bit)

01000100 (donnée a transmettre au final) -> soit 68 en base
décimale

L'évolution du masque

Ce titre pourrait étre apparenté a celui d'un film d'horreur, mais n'indique finalement que nous allons faire évoluer le masque
automatiquement a chaque fois que I'on aura envoyé un bit.

Cette fois, cela va étre un peu plus simple car nous n'avons qu'a rajouter un opérateur spécialis¢ dans le décalage. Sil'on veut
déplacer le 1 du masque (qui permet de montrer un bit & 'Arduino) de la droite vers la gauche (pour le LSBFirst) ou dans l'autre
sens (pour le MSBFirst), nous avons la possibilité d'utiliser l'opérateur << pour décaler vers la gauche ou >> pour décaler vers la
droite. Par exemple :

Code : C

00000001 (masque initial)
<< 3 (on décale de trois bits)

00001000 (masque final, décalé)

Et dans le sens opposé :

Code : C

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 180/326

10000000 (masque initial)
>> 3 (on décale de trois bits)

00010000 (masque final, décalé)

Avouez que ce n'est pas tres compliqué maintenant que vous maitrisez un peu les masques. @

On va donc pouvoir isoler un par un chacun des bits pour les envoyer au 74HC595. Comme le sens dépend d'un paramétre de la
fonction, nous rajoutons un test pour décaler soit vers la droite, soit vers la gauche.
Voici la fonction que nous obtenons a la fin :

Code : C

void envoi ordre(int dataPin, int clockPin, boolean sens, char
donnee)
{
for (int i=0; i<8; i++) //on va parcourir chaque bit de 1'octet
{
//on met 1'horloge a 1'état bas
digitalWrite (clockPin, LOW) ;
//on met le bit de donnée courante en place
if (sens)
//envoie la donnée en allant de droite & gauche, en partant
d'un masque de type "00000001"
digitalWrite (dataPin, donnee & 0x01<<i);
else
//envoie la donnée en allant de gauche & droite, en partant
d'un masque de type "10000000"
digitalWrite (dataPin, donnee & 0x80>>1i);
//enfin on remet 1'horloge a 1'état haut pour faire prendre en
compte cette derniéere
digitalWrite (clockPin, HIGH) ;
}

@ Oula ! Hé ! Stop ! C'est quoice 0x01 et ce 0x80 ? Qu'est-ce que ¢a vient faire 1a, c'est pas censé étre le masque que l'on
doit voir ?

Si, c'est bien cela. Il s'agit du masque... écrit sous sa forme hexadécimale. Il aurait été bien entendu possible d'écrire :
0b00000001 alaplacede 0x01,0u 0b10000000 alaplace de 0x80. On a simplement opté pour la base hexadécimale qui
est plus facile @ manipuler.

Cette technique de masquage peut sembler difficile au premier abord mais elle ne l'est pas réellement une fois que l'on a
& compris le principe. Il est essentiel de comprendre comment elle fonctionne pour aller loin dans la programmation de
_Ah micro-controleur (pour paramétrer les registres par exemple), et vous en aurez besoin pour les exercices du chapitre
suivant. Pour plus d'informations un bon tuto plus complet mais rapide a lire est rédigé ici... en PHP, mais c'est pareil.

Un petit programme d'essai
Je vous propose maintenant d'essayer notre belle fonction. Pour cela, quelques détails sont a préciser/rajouter.
Pour commencer, il nous faut déclarer les broches utilisées. Il y en a trois : verrou, horloge et data. Pour ma part elles sont
branchées respectivement sur les broches 11, 12 et 10. Il faudra donc aussi les déclarer en sortie dans le setup(). Si vous faites de

méme vous devriez obtenir le code suivant :

Code : C

www.siteduzero.com

http://www.siteduzero.com/tutoriel-3-32351-introduction-aux-operateurs-de-bits.html
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

181/326

//Broche connectée au ST CP du 74HC595
const int verrou = 11;

//Broche connectée au SH CP du 74HC595
const int horloge = 12;

//Broche connectée au DS du 74HC595
const int data = 10;

void setup () {
//0n met les broches en sortie
pinMode (verrou, OUTPUT) ;
pinMode (horloge, OUTPUT) ;
pinMode (data, OUTPUT) ;

}

Ensuite, nous allons nous amuser a afficher un nombre allant de 0 a 255 en binaire. Ce nombre peut tenir sur un octet, ¢ga tombe
bien car nous allons justement transmettre un octet ! Pour cela, nous allons utiliser une boucle for() allant de 0 a 255 et qui

appellera notre fonction.

Avant cela, je tiens a rappeler qu'il faut aussimettre en place le verrou en encadrant l'appel de notre fonction. Rappelez-vous, si

nous ne le faisons pas, l'affichage risque de scintiller.

Code : C

//0n active le verrou le temps de transférer les données

digitalWrite (verrou, LOW);

//on envol toutes les données grdce a notre belle fonction (octet

inversée avec '~' pour piloter les LED a 1'état bas)
envoi ordre (data, horloge, 1, ~J);

//et enfin on reldche le verrou

digitalWrite (verrou, HIGH);

Et voici le code complet que vous aurez surement deviné :

Code : C

//Broche connectée au ST CP du 74HC595
const int verrou = 11;

//Broche connectée au SH CP du 74HC595
const int horloge = 12;

//Broche connectée au DS du 74HC595
const int data = 10;

void setup () {
//0n met les broches en sortie
pinMode (verrou, OUTPUT) ;
pinMode (horloge, OUTPUT) ;
pinMode (data, OUTPUT) ;

}

void loop () {
//on affiche les nombres de 0 a 255 en binaire
for (char i = 0; 1 < 256; i++) {

//0n active le verrou le temps de transférer les données

digitalWrite (verrou, LOW) ;

//on envoil toutes les données grdce a notre belle fonction

envoi ordre(data, horloge, 1, ~1i);

//et enfin on reldche le verrou

digitalWrite (verrou, HIGH) ;

//une petite pause pour constater 1'affichage
delay(1000) ;

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

182/326

void envoi ordre(int dataPin, int clockPin, boolean sens, char
donnee)
{
for (int i=0; i<8; i++) //on va parcourir chaque bit de 1'octet
{
//on met 1'horloge a 1'état bas
digitalWrite (clockPin, LOW) ;
//on met le bit de donnée courante en place
if (sens)
digitalWrite (dataPin, donnee & 0x01<<i);
else
digitalWrite (dataPin, donnee & 0x80>>1);
//enfin on remet 1'horloge a 1'état haut pour faire prendre
compte cette derniere
digitalWrite (clockPin, HIGH) ;

}

Et voila le travail ! :

en

Vous étes content ? vous avezune belle fonction qui marche bien et fait le boulot proprement ? Alors laissez-moi vous présenter
une nouvelle fonction quis'appelle shiftOut (). Quelest son rdle ? Faire exactement la méme chose que la fonction dont l'on

vient juste de finir la création.

@ *#@'e !l (@)

Alors oui je sais, c'est pas sympa de ma part de vous avoir fait travailler mais admettez que c'était un trés bon exercice de

développement non ? A présent vous comprenez comment agit cette fonction et vous serez mieux capable de créer votre propre
systéme que sije vous avais donné la fonction au début en disant : "voila, c'est celle-1a, on l'utilise comme ¢a, ¢a marche, c'est

beau... mais vous avezrien compris".

Comme je vous le disais précédemment, cette fonction sert a faire ce que l'on vient de créer, mais elle est déja intégrée a

I'environnement Arduino (donc a été testée par de nombreux développeurs, ne laissant pas beaucoup de place pour les bugs !).

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 183/326

Cette fonction prend quatre parameétres :

La broche de donnée

La broche d'horloge

Le sens d'envoides données (utiliser avec deux valeurs symboliques, MSBFIRST ou LSBFIRST)
L'octet a transmettre

Son utilisation doit maintenant vous paraitre assez triviale. Comme nous l'avons vu plutét, il suffit de bloquer le verrou, envoyer
la donnée avec la fonction puis relacher le verrou pour constater la mise a jour des données.
Viciun exemple de loop avec cette fonction :

Code : C

void loop ()
{
//on affiche les nombres de 0 & 255 en binaire
for (int i = 0; i < 256; i++)
{
//0On active le verrou le temps de transférer les données
digitalWrite (verrou, LOW) ;
//on envoil toutes les données grdce a shiftOut (octet inversée
avec '~' pour piloter les LED a 1'état bas)
shiftOut (data, horloge, LSBFIRST, ~1i);
//et enfin on relache le verrou
digitalWrite (verrou, HIGH);
//une petite pause pour constater 1'affichage
delay (1000) ;

Je vous propose maintenant trois exercices pour jouer un peu avec ce nouveau composant et tester votre habileté au code. Le
but du jeu est d'arriver a reproduire l'effet proposé sur chaque vidéo. Le but second est de le faire intelligemment... Autrement dit,
tous les petits malins qui se proposeraient de faire un "tableau de motif" contenant les valeurs "affichages binaires" successives
devront faire autrement.

Amusez vous bien !

PS : Les corrections seront juste composées du code de la loop avec des commentaires. Le schéma reste le méme ainsi que les
noms de broches utilisés précédemment.

PPS: Labande son des vidéos est juste la pour cacher le bruit de la télé... je n'y ai pas pensé quand je faisais les vidéos et Youtube ne permet pas de virer la bande audio...

Consigne

Pour ce premier exercice, histoire de se mettre en jambe, nous allons faire une animation simple. Pour cela, il suffit de faire un
chenillard tres simple, consistant en une LED qui "avance" du début a la fin de la ligne. Arrivée a la fin elle repart au début. Sice
n'est pas clair, regardez la vidéo ci-dessous ! (Eventuellement vous pouvez ajouter un bouton pour inverser le sens de
l'animation).

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 184/326

Correction

Secret (cliquez pour afficher)

Code : C

void loop () {
for (int i = 0; i < 8; 1i++) {
//0On active le verrou le temps de transférer les données
digitalWrite (verrou, LOW) ;
//on envoie la donnée
//ici, c'est assez simple. On va décaler 1'octet 00000001 1
fois puis 1'envoyer
shiftOut (data, horloge, LSBFIRST, ~(0x01 << 1i));
//et enfin on relache le verrou
digitalWrite (verrou, HIGH) ;
//une petite pause pour constater 1'affichage
delay (250) ;

Consigne

Cette seconde animation ne sera pas trop compliquée non plus. La seule différence avec la premiére est que lorsque la "lumicre"
atteint la fin de la ligne, elle repart en arriére et ainside suite. La encore sice n'est pas clair, voici une vidéo :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

185/326

Correction

Secret (cliquez pour afficher)

Dans cet exercice, le secret est d'utiliser de maniere intelligente le paramétre LSBFIRST ou MSBFIRST pour pouvoir

facilement inverser le sens de I'animation sans écrire deux fois la boucle for.
Code : C

char sens = MSBFIRST; //on commence a aller de droite vers gauche

void loop () {
for (int 1 = 0; i < 7; i++) { //on ne fait la boucle que 7 fois
pour ne pas se répéter au début et a la fin
//0On active le verrou le temps de transférer les données
digitalWrite (verrou, LOW) ;
//on envoie la donnée
//0n va décaler 1'octet 00000001 i fois puis 1'envoyer
shiftOut (data, horloge, sens, ~(0x01 << 1i));
//et enfin on relache le verrou
digitalWrite (verrou, HIGH);
//une petite pause pour constater 1'affichage
delay (250);
}
sens = !sens; //on inverse le sens d'affichage pour la
prochaine fois (MSBFIRST <-> LSBFIRST)
}

Consigne

Pour cette derniére animation, il vous faudra un peu d'imagination. Imaginez le chenillard numéro 1 allant dans les deuxsens en

méme temps... C'est bon ? sinon alors voici la vidéo :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 186/326

Correction

Secret (cliquez pour afficher)
Code : C

void loop () {
char donnee = 0;

for (int i = 0; i < 8; i++) {
//on saute la boucle si i1 vaut 4 (pour une histoire de
fluidité de 1'animation, tester sans et vous verrez)
if(i == 4)
continue;

//calcule la donnée a envoyer

donnee = 0;

donnee = donnee | (0x01 << i); // on calcule 1'image du
balayage dans un sens

donnee = donnee | (0x80 >> 1i); // et on ajoute aussi 1'image

du balayage dans 1'autre sens

//0On active le verrou le temps de transférer les données
digitalWrite (verrou, LOW) ;

//on envoie la donnée

shiftOut (data, horloge, LSBFIRST, ~donnee);

//et enfin on relache le verrou

digitalWrite (verrou, HIGH);

//une petite pause pour constater 1'affichage

delay (250);

Exo bonus

Consigne

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

187/326

Icile but du jeu sera de donner un effet de "chargement / déchargement" en alternance...
Comme d'habitude, voici la vidéo pour mieux comprendre...

Correction

Secret (cliquez pour afficher)

Dans cet exercice, tout repose sur l'utilisation du MSBFIRST ou LSBFIRST ainsi que du complément appliqué sur la donnée.

Ce dernier permet d'activer ou non les LEDs et le premier atout permet d'inverser l'effet.
Code : C

char extinction = 0; //on commence a aller de droite vers gauche

void loop () {

char donnee = extinction; //on démarre a 0 ou 1 selon...

for (int i = 0; i < 8; i++) {

//0On active le verrou le temps de transférer les données

digitalWrite (verrou, LOW) ;
//sl on est en train d'éteindre
if (extinction)

shiftOut (data, horloge, MSBFIRST, ~donnee);//on envoie la

donnée inversé
//sinon
else

shiftOut (data, horloge, LSBFIRST, donnee) ; //on envoie la

donnée normale
//et enfin on relache le verrou
digitalWrite (verrou, HIGH);
//une petite pause pour constater 1'affichage
delay (250);

donnee = donnee | (0x01 << i); //et on met a jour la donnée

en cumulant les décalages

}

extinction = !extinction; //permet d'inverser "MSBFIRST <->

LSBFIRST" comme dans 1'exercice 2

}

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 188/326

Sijamais 8 nouvelles sorties ne vous suffisent pas (bien que cela n'en face que 5 au total puisque trois sont prises pour
communiquer avec le composant), les ingénieurs ont déja tout prévu. Ainsiil est possible de mettre en cascade plusieurs
74HC595 !

Pour cela, le 595 dispose d'une broche appelée "débordement". Lorsque vous envoyezun seul octet au 74HC595, rien ne se
passe sur cette broche. Cependant, si vous envoyez plus d'un octet, les huit derniers bits seront conservés par le composant,
tandis que les autres vont étre "éjectés" vers cette fameuse sortie de débordement (numéro 9). Le premier bit envoy¢ ira alors
vers le 74HCS95 le plus loin dans la chaine. Souvenez-vous, elle s'appelle "serial data output” et javais dit qu'on reviendrait
dessus. D'une maniére trés simple, les bits éjectés vont servir aux éventuels 74HCS95 qui seront mis en aval de celui-ci.

Branchement
Il suffit dons de mettre deux 595 bout-a-bout en reliant la broche de débordement du premier sur la broche de donnée du second.

Ainsi, les bits "en trop" du premier arriveront sur le second. Afin que le second fonctionne, il faut aussi également relier les
mémes broches pour 'horloge et le verrou (reliées en paralléle entre les deux).

Les images proviennent d'une explication du site Arduino. Attention, dans ce schéma les LEDs sont branchées "a
lenvers" de ce que nous avons l'habitude de faire.

www.siteduzero.com

http://arduino.cc/en/Tutorial/ShiftOut
http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 189/326

+5W
.,{‘__ 220 1)
—®—\\W\
o 290 0
—@&—\VW\-
o 220 0
—®—\V\V—r -
%_W_ 1o micrecontraller datafin
to microcontraller latchPin
":3 220 1 to microcontroller clockPin
" 290 |
—®—\\\
1
i 290 0} L _I H Deux 595 en cascade,
—®—\\\
'i..""\- 200
i‘\\ 221 (1
"n:’k 200]
—®—\\\
i
=
3 o
——V\W\
Y 220 61
N schéma ’

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 190/326

atcdas g h []
&1 5]

[=] [: f 1 aag Gl
d“l s v oo oo
ag o o oo w
:_._. oa og n

e W ooa T N =
o o oa | o 2n —
a)] ot o n o
-l'.'h - W an ' n =
as an e p =
a 1 1 @ L gt el
f‘. s LN A =
o] “ 8 Fog =<
a]] wa L
f‘."l e | b O J0
QoMo oo ! ! oo 08w
a ; rie e el
l“'i s & w o B]
aoMooon oo &0 o
o o ool n
r‘\ oy o e
e T o e o £ 1.1
o GO0 o oo ol 2
f“'l"‘-'l' w ooa| £g
ae o 5 e
oo 3 g el o & —
ad . L F=R S (=]
" T S s
oo) :
oo 28 Deux 595 en
ao 2 za § oo
o 3 or
o : iy E
rl-u ST
&} L0 ¢
5] - aa
r‘m PR g
(s R+ - ‘o
a o > ar |
A e . C0
oo Ll of
a 15 eand
"‘1 ol . oD
oo ! Jiif
=] -]
f‘l 's | 3] w oar
ag - oo
a | la o
A om0
=N 2o
o oo

s v oo
(=l an
o : cooor] ap
0 il o lURY
oo [a0
oo (=X~
ano 5o
ao (= =]
oo oo
anQ oo

abcdae ghi |

cascade, breadboard

Exemple d'un affichage simple

Au niveau du programme, il suffira de faire appel deux fois de suite a la fonction shiftOut pour tout envoyer (2 fois 8 bits). Ces
deuxappels seront encadrés par le verrou pour actualiser l'affichage des données. On commence par envoyer la donnée qui doit
avancer le plus pour atteindre le second 595, puis ensuite on fait celle qui concerne le premier 595.

Voiciun exemple :

Code : C
const int verrou = 11;
const int donnee = 10;
const int horloge = 12;

char premier = 8; //en binaire : 00001000
char second = 35; //en binaire : 00100011

void setup ()
{
//on déclare les broches en sortie
pinMode (verrou, OUTPUT) ;
pinMode (donnee, OUTPUT) ;
pinMode (horloge, OUTPUT) ;

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties

191/326

//puis on envoie les données juste une fois

//on commence par mettre le verrou
digitalWrite (verrou, LOW) ;

//on envoie la seconde donnée d'abord
shiftOut (donnee, horloge, LSBFIRST, ~second); //les LEDs vertes

du montage

//on envoie la premiére donnée
shiftOut (donnee, horloge, LSBFIRST, ~premier); //Les LEDs rouges

du montage

}

//et on relache le verrou pour mettre a jour les données
digitalWrite (verrou, HIGH);

void loop ()

{
}

//rien a faire

Exemple d'un chenillard

Voici maintenant un petit exemple pour faire un chenillard sur 16 LEDs. Pour cela, j'utiliserai un int qui sera transformé en char au
moment de I'envoi. Il faudra donc le décaler vers la droite de 8 bits pour pouvoir afficher ses 8 bits de poids fort. Voici une loop
pour illustrer mes propos (le setup étant toujours le méme).

Code : C

void loop ()

{

int masque = 0;
for (int 1=0; i<1l6; i++)

{

masque = 0x01 << 1i; //on décale d'un cran le masque

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 192/326

//on commence par mettre le verrou
digitalWrite (verrou, LOW) ;

//on envoie la seconde donnée d'abord

shiftOut (donnee, horloge, LSBFIRST, ~ (masque & Ox00FF)); //On
envoie les 8 premiers bits

//on envoie la premiére donnée

shiftOut (donnee, horloge, LSBFIRST, ~((masque & OxFF00) >> 8));
//0n envoie les 8 derniers bits

//et on relache le verrou pour mettre a jour les données
digitalWrite (verrou, HIGH);
delay (500) ;

}

Ce composant peut vous paraitre un peu superflu mais il existe en fait de trés nombreuses applications avec. Par exemple, si vous
voulez réaliser un cube de LED (disons 4x4x4 pour commencer gentiment). Si vous vouliez donner une broche par LED vous
seriez bloquer puisque Arduino n'en posséde pas autant (il vous en faudrait 32). Ici le composant vous permet donc de gérer
plus de sorties que vous ne le pourriez initialement.

On achéve enfin cette deuxiéme partie ou vous avez pu acquérir un ensemble de connaissances nécessaires pour poursuivre la

lecture de ce tutoriel. La prochaine partie va traiter sur la communication entre une Arduino et un ordinateur ou méme entre deux
Arduino. Cela risque d'étre prometteur ! @)

www.siteduzero.com

http://www.siteduzero.com

Partie 2 : [Pratique] Gestion des entrées / sorties 193/326

Maintenant que nous avons de bonne bases, nous allons pouvoir passer a quelque chose d'un tout petit peu plus difficile (mais
pas de quoi avoir peur pour autant).

Cette partie va vous apprendre a utiliser un moyen de communication, afin de faire "parler" votre carte Arduino avec un autre
matériel ou un ordinateur.

-——> Matériel nécessaire : dans la balise secret pour la partie 3.
/4 /4 ° |4
Généralités

Saviez-vous que I'USB ne sert pas qu'a alimenter la carte Arduino ? Dans ce chapitre, nous allons apprendre a utiliser la liaison
série, au travers de 'USB. Grace a elle, vous pourrez faire communiquer entre eux, votre ordinateur et la carte Arduino.

Mais juste avant de commencer a utiliser la liaison série avec Arduino, je vous propose ce petit chapitre sur les généralités de
cette liaison. Elles vous seront utiles lorsque vous aurez besoin de faire communiquer des appareils entre eux pour faire des
commandes domotiques par exemple, ou bien tester des appareils fonctionnant avec cette liaison, etc.

d La lecture de ce chapitre n'est donc pas obligatoire, mais vivement conseillée. Aprés, vous n'étes pas obligé de retenir
tout ce qui va étre dit sur les normes, les tensions, etc. de la liaison série.

Voyons maintenant tout cela !

Pour faire des communications entre différents supports, il existe différents moyens. Pour n'en citer que quelques-uns, on
retrouve les bus CAN, le bus I2C, 'Ethernet, etc. et la liste est longue. Dans notre cas, nous allons étudier la communication
série, aussiappelée RS232, puisqu'elle est intégrée par défaut dans la carte Arduino.

A quoi ¢a va nous servir ?

La voie série permet de communiquer de maniére directe et unique entre deux supports. Ici, elle se fera entre un ordinateur et la
platine Arduino, mais elle pourrait aussi se faire par exemple entre deux cartes Arduino. Dans sa forme la plus simple, elle ne
nécessite que 3 fils : 2 pour I'émission/réception et 1 pour la masse afin d'avoir un référentiel électrique commun.

Dans des formes plus évoluées, on retrouve des fils de controle de flux. Ces liaisons permettent de s'assurer que la
communication se passe correctement en utilisant des systémes de synchronisation. Mais on ne verra pas ce dernier point car la
carte Arduino ne le supporte tout simplement pas. On va uniquement utiliser Iémission/réception de données.

Ainsi, voila ou je voulais en venir, on va faire communiquer notre carte Arduino avec notre ordinateur ! Vous verrez, c'est génial
I @ En effet, une fois que vous aurez bien saisi comment fonctionne la liaison série, il vous sera facile de l'utiliser et difficile de

vous en passer (idéal pour faire du debug par exemple). Et pour les plus téméraires, vous pourrez créer un logiciel complet qui
communique des ordres a votre carte Arduino pour effectuer des actions plus ou moins complexes (par exemple, créer un
systéme de maison intelligente).

Qu'est-ce qu'un protocole de communication ?

En informatique, lorsque l'on parle de protocole de communication, il s'agit de régles prédéfinies pour un type de communication.
Icice sera le type liaison série. Pour simplifier, je vous parle en frangais. Seuls ceux qui comprennent le frangais pourront lire ce
que j'écris. Saufdans le cas ou la personne qui lit ce qui est écrit, connait le frangais ou dispose d'un traducteur. Eh bien, lorsque
la carte Arduino communiquera avec l'ordinateur, il faudra que ces deux dispositifs puissent se comprendre, donc "parler le méme
langage". C'est notre fameuse liaison série.

Les types de liaison série

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-457282-1-presentation.html#ss_part_3
http://sciences.siteduzero.com/tutoriel-3-483685-l-electricite.html#ss_part_4
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 194/326

Le premier type est la liaison simplex. [l n'y a qu'un émetteur et un seul récepteur. Par exemple, seul l'ordinateur peut envoyer des
données a la carte Arduino. Ca nous n'est pas trés utile si on veut faire le contraire. On n'utilisera donc pas ce type de liaison.

Le deuxi¢me est la liaison half-duplex. En fait, c'est un peu lorsque l'on communique a quelqu'un avec un talkie-walkie. L'un parle
pendant que l'autre écoute. Nous n'utiliserons pas ce type de communication.

Le dernier est la liaison full-duplex. L3, c'est un peu comme le téléphone, chacun peut parler et écouter en méme temps ce que
l'autre dit. Avec Arduino, c'est de ce type de communication que nous disposons. Ce qui est bien pratique afin d'éviter d'attendre
que l'on ait réceptionné ce que l'ordinateur envoie pour ensuite lui émettre des données.

Le support de liaison

Tout comme votre téléphone ou votre télécommande, pour communiquer, les appareils ont besoin d'un support de transmission.
Par exemple, un fil électrique, une liaison infrarouge ou hertzienne. Je ne m'étends pas, ce n'est pas l'objet de ce chapitre. On
utilisera, pour cette partie, uniquement la liaison filaire.

| On en termine 13, vous trouverez d'autres informations plus complétes sur internet, le but étant de vous faire utilise la
/' liaison série. Donc iln'y a pas besoin de grosses connaissances.

On va enfin voir comment fonctionne cette liaison et ce qu'elle fait.

Les données

D'abord, on va voir sous quelle forme sont envoyées les données. Oui, car le but de la liaison série est bien de permettre
I'échange de données entre deux dispositifs.

Nous allons prendre I'exemple de la lettre 'P' majuscule. Wild, ce sera la donnée que nous transmettrons. Saviez-vous que chaque
lettre du clavier peut se coder avec des chiffres ou des chiffres et des lettres ? Ces codes sont définis selon la table A SCII.

En haut a gauche de la table ASCII, on observe la ligne : "Code en base..." et 1a vous avez: 10, 8, 16, 2. Respectivement, ce sont
les bases décimale (10), octale (8), hexadécimale (16) et binaire (2).

Nous, ce qui va nous intéresser, c'est la base binaire. Oui car le binaire est une succession de 0 et de 1, qui sont en fait des états
logiques, tel que LOW (0) et HIGH (1). En sortie du micro-controleur de la carte Arduino, ces états se traduisent par une tension
de OV pour I'état logique LOW et une tension de 5V pour un état logique HIGH. Ces états sont ce qu'on appelle des bits. Un bit
est donc la traduction d'un état logique (bit & 0 pour un état logique LOW ; bit a 1 pour un état logique HIGH).

Reprenons notre lettre 'P'. Elle se traduit, en binaire, par la succession de 1 et 0, comme ceci: 01010000. Il y a donc 8 bits accolés
les uns auxautres. On appelle cela un octet. En informatique, un octet, c'est comme un mot pour nous. D'ailleurs, quand on parle
de mots transmis sur une liaison, on parle d'octets.

| Pourvotre culture, sachez que la table ASCII est a l'origine codée sur 7 bits. Pour plus d'information sur le binaire,
- consultez cette page.

Le protocole

Bon, aprés cette bréve introduction, on va pouvoir regarder comment est transmise la lettre 'P', qui sera notre mot, ou plutot notre
octet.

On va prendre un exemple assez simple :

e lorsque vous passezun coup de fil, vous commencez souvent par dire "Bonjour" ou "Allo". Ce message s’appellera,
dans notre cas, le bit de départ ou bit de start. Il posseéde un niveau logique 0 (NLO).
Ensuite, vous allez dire des mots, donc l'information que vous avez a transmettre.
Enfin, a la fin de la communication vous dites "Au revoir" ou "Salut I" "A plus !" etc. Cette information sera le bit de fin
ou bit de stop, et aura un niveau logique 1 (NL1).

www.siteduzero.com

http://fr.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange%23Table_des_128_caract.C3.A8res_ASCII
http://www.siteduzero.com/tutoriel-3-155460-les-calculs-en-binaire.html
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 195/326

u u unicati é1i i . D'ailleurs, savez-vou urquoi la liai eri
Clest sous cette "norme" que la communication série fonctionne comme ¢a. D'ailleurs, savez-vous pourquoi la liaison série
s'appelle ainsi ?

Parce que l'ordinateur est branché en série ?

Non, ce n'est pas pour ¢a. En fait, c'est parce que les données a transmettre sont envoyées une par une. Si l'on veut, elles sont a
la queue leu-leu. Voila un petit schéma pour résumer ce que l'on vient d'affirmer :

ar Bits de données Stop

Enchainement des données

Ha, je vois. Donc il y a le bit de start, notre lettre P et le bit de stop. D'apres ce qu'on a dit, cela donnerait, dans l'ordre,
ceci : 001010001. @

Eh bien... c'est presque ¢a. Sauf que les petits malins qui ont inventé ce protocole ont eu la bonne idée de transmettre les
données a l'envers.

Par conséquent, la bonne réponse était : 000010101. Avec un chronogramme, on observerait ceci :

Start Données (ici, P) Stop

d'émission d'un bit dépendant de la vitesse de transmission) et I’échelle des ordonnées est en Wlt (enfin, ici, on

/\ On ne le voit pas sur ce chronogramme, mais I'échelle des abscisses est en unité de temps (ici ce sont des bits, la durée
1
i représente I'état des bits : 1 ou 0)

Sur une liaison série, les données sont toujours envoyées sous forme d'octet. Mais on peut trés bien envoyer seulement 7 bits.
Par exemple, pour envoyer le caractére '?', on enverra : 00111111 en octet, ou bien sur 7 bits : 0111111. Avec Arduino ce
paramétres est réglé a 8 bits de données (un octet). Donc le jour ou vous écrirez une application de réception des données ou
utiliserez un logiciel de voie série, vérifiez qu'il est bien a 8 (toujours par défaut cependant).

La norme RS232

Qu'est-ce que c'est que cette béte-1a ? A priori, il s'agit d'une norme. @ Bon, soit. Que fait-elle ? Cette norme définit les niveaux

de tension qui doivent étre utilisés pour 'échange de données. Je le disais tout a I'heure, le micro-contréleur sur la carte Arduino
n'utilise que des tensions de 0 et 5V (sauf pour ses entrées analogiques). Or, la norme RS232 nous impose ceci :

e Le NLI doit étre une tension comprise entre -3V et -25V
e Te NLOdoit étre une tension comprise entre +3V et +25V

Encore un raisonnement logique de la part des concepteurs de cette liaison... @

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 196/326

Bon, ben c'est a peu pres tout ce qu'ily a a savoir 1a dessus. Je vais résumer tout ce que 'on vient de dire avec cette image,
extraite de la page Wikipédia :

+16V Space
LSB MSE

Start 1 1 0 1 0 0 1 0 Stop
+3V

Start b0 bl b2 b3 b4 b5 b b7 Stop
-3V
Idle Idle

Time
_—},

15V Mark

Bit). En fait, lorsqu'on lit 0001010 (donc 'P'), le bit LSB est celui qui est tout a droite, tandis que le MSB est celui tout a

O Petite précision, le MSB et le LSB sont les bits de poids fort (Most Significant Bit) et de poids faible (Less Significant
gauche.

La vitesse de communication
Quand on va utiliser la voie série, on va définir la vitesse a laquelle sont transférées les données. En effet, comme les bits sont
transmis un par un, la liaison série envois les données en un temps prédéfini. Par exemple, on pourra envoyer une totalité de 9600

bits par secondes (9600 bps). Avec cette liaison, on peut envoyer entre 75 et 115200 bits par secondes ! Ce sera a nous de définir
cette vitesse.

1 [l faut faire attention de ne pas confondre les bps et les bauds. Vous trouverez de plus amples informations a ce sujet
sur cette page.

Maintenant que l'on sait comment fonctionne le protocole de communication de la liaison série, je vais vous en dire un peu plus
sur cette mystérieuse liaison, qui, depuis tout a I'heure n'a toujours pas révélé ou elle se cachait.

Alors 13, les enfants, je vous parle d'un temps que les moins de vingt ans ne peuvent pas connaittttrrreuhhh... Ah ben 13, chui

www.siteduzero.com

http://fr.wikipedia.org/wiki/RS-232
http://fr.wikipedia.org/wiki/Baud_%28mesure%29
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 197/326

pas d'accord ! ®

Bon on reprend ! Comme énoncé, je vous parle de quelque chose quin'existe presque plus. Ou du moins, vous ne trouverez
certainement plus cette "chose" sur la connectique de votre ordinateur. En effet, je vais vous parler du connecteur DB9.

Qu'est-ce que c'est ?

Il'y a quelques années, 'USB n'était pas sivéloce et surtout pas tant répandu. Beaucoup de matériels (surtout d'un point de vue
industriel) utilisaient la voie série. A I'époque, les équipements se branchaient sur ce qu'on appelle une prise DB9 (9 car 9
broches). Sachez simplement que ce nomest attribué a un connecteur qui permet de relier divers matériels informatiques entre
eux.

||
Photos extraites du site Wikipédia - Connecteur DB9
Male a gauche ; Femelle a droite

A quoi ¢a sert ?

Sije vous parle de ¢a dans le chapitre sur la liaison série, c'est qu'il doit y avoir un lien, non ? Juste, car la liaison série (je

parle la de la transmission des données) est véhiculée par ce connecteur. Donc, notre ordinateur dispose d'un connecteur DB9,
qui permet de relier, via un cable adapté, sa connexion série & un autre matériel.

@ Mais alors, pourquoi tant de broches puisque tu nous as dit que la liaison série n'utilisait que 3 fils ?

Eh bien, toutes ces broches ont une fonction. Je vais vous les décrire, ensuite on verra plus en détail ce que l'on peut faire avec.

1. DCD : Détection d'un signal sur la ligne. Utilisée uniquement pour la connexion de l'ordinateur 4 un modem ; détecte la
porteuse

2. RXD : Broche de réception des données

3. TXD : Broche de transmission des données

4. DTR: Le support qui veut recevoir des données se déclare prét a "écouter" l'autre

5. GND : Le référentiel électrique commun ; la masse

6. DSR: Le support voulant transmettre déclare avoir des choses a dire

7. RTS : Le support voulant transmettre des données indique qu'il voudrait communiquer

8. CTS : Invitation a émettre. Le support de réception attend des données

9. RI: Trés peu utilisé, indiquait la sonnerie dans le cas des modems RS232

Vous voyez déja un apercu de ce que vous pouvez faire avec toutes ces broches. Mais parlons-en plus amplement.
Dans une communication, il arrive quelques fois qu'il y ait des erreurs de transmission (par exemple, dans une conversation

téléphonique, il n'est pas anodin de mal avoir compris le nomde la personne, on lui redemande alors de I'énoncer). Sur la liaison
série il peu se passer la méme chose. Cependant, si on utilise la liaison telle que l'on I'a vu, on ne pourra pas vérifier la présence

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 198/326

d'erreurs. Cest 1a qu'interviennent les moyens mis en place pour la gestion des erreurs.

Bit de parité

Le premier moyen, et le plus simple a mettre en ceuvre pour diminuer le risque de réceptionner un signal sans erreur de
transmission est d'utiliser un bit de parité. Ici, plus question de parler d'¢lectronique, mais plutot de logique et d’algorithme.

Comme vue précédemment, une transmission est faite d'un enchainement de plusieurs bits : bit de start, bits de données puis bit
de stop. Afin de vérifier s'ils ont tous été bien transmis correctement, on va ajouter un bit de parité juste avant le bit de stop.

Ca a un rapport avec le fait que ce soit pair ou impair ? Mais alors, sioui, c'est quoi qui est pair et impair ?

Tout a fait, il s'agit bien de cela. Regardons ensemble plus en détail ce que cela signifie.

Le bit de parité va en fait servir pour indiquer que le nombre de bit au niveau logique 1 soit bon. Plus exactement, sije choisis un
bit de parité paire pour ma transmission série, alors ce bit aura un niveau logique (0 ou 1) qui dépend du nombre de bits transmis
qui sont a I'état haut, pour donner au final un nombre pair de bits a 1 y compris avec le bit de parité. Vila une petite image pour
résumer ¢a :

Start Données Parita

‘1i0:1:1:1:0:1:0:¢ ¢
Stop

On voit que le bit de parité est a 1, sachant qu'on I'a choisi pour qu'il soit pair et si on compte le nombre de 1, on a bien un
nombre pair.

Ilen est de méme pour le bit de parité impaire, celui-ci est a 0 (pour les mémes données), ce qui indique bien qu'on a un nombre
impairde 1 :
Start Donnges Parité&

10111010
Stop

Ceciest donc le premier moyen mis en ceuvre pour éviter certaines erreurs de transmission. Apres, c'est le programme qui va voir
sile bit de parité est bon ; s'il est mauvais alors on demande a ce que les données soient renvoyées. Il se peut également que se
soit le bit de parité qui soit mauvais (erreur de transmission).

Dans certains cas, et il n'est pas rare, les dispositifs communicant entre eux par l'intermédiaire de la liaison série ne traitent pas les
données a la méme vitesse. Tout comme lorsque l'on dicte quelque chose a quelqu'un et qu'il en prend note, celui qui dicte sera
plus rapide que celui qui écrit. Celui qui dicte dictera alors moins vite pour attendre que celui qui écrit puisse intercepter toutes
les informations dictées. Pour la liaison série, il existe quelque chose de semblable qui s’appelle le contréle de flux.

Controle de flux logiciel

Commengons par le contrdle de flux logiciel, plus simple a utiliser que le contrdle de flux matériel. En effet, il ne nécessite que
trois fils : la masse, le Rxet le TX. Eh oui, ni plus ni moins, tout se passe logiciellement.

Le fonctionnement trés simple de ce contréle de fluxutilise des caractéres de la table ASCII, le caractére 17 et 19, respectivement

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 199/326

nommés XON et XOFF.

Ceci se passe entre un équipement E, qui est Iémetteur, et un équipement R, qui est récepteur. Le récepteur recoit des
informations, il les traite et stockent celles qui continuent d'arriver en attendant de les traiter. Mais lorsqu'il ne peut plus stocker
d'informations, le récepteur envoie le caractére XOFF pour indiquer a I'émetteur qu'il sature et qu'il n'est plus en mesure de
recevoir d'autres informations. Lorsqu'il est a nouveau apte a traiter les informations, il envoie le caractére XON pour dire a
I'émetteur qu'il est a nouveau prét a écouter ce que I'émetteur a a lui dire.

Controle de flux matériel

On n'utilisera pas le contrdle de flux matériel avec Arduino, mais il est bon pour vous que vous sachiez ce que c'est. Je ne parlerai
en revanche que du controle matériel a 5 fils. Il en existe un autre qui utilise 9 fils.

Le principe est le méme que pour le contrdle logiciel. Cependant, on utilise certaines broches du connecteur DB9 dont je parlais
plus haut. Ces broches sont RTS et CTS.

Dispositif 1 Dispositif 2

1%/
Rxl g

Tl
| Rx2

RTSI RTS2
CTS! |- < » | EGES2

Voila le branchement adéquat pour utilise ce contrdle de flux matériel a 5 fils.

Une transmission s'effectue de la maniére suivante :

e Ledispositif 1, que je nommerais maintenant |'émetteur, met un état logique 0 sur sa broche RTS1. Il demande donc au
dispositif 2, le récepteur, pour émettre des données.

Si le récepteur est prét a recevoir des données, alors il met un niveau logique 0 sur sa broche RTS2.

Les deuxdispositifs sont préts, I'émetteur peut donc envoyer les données qu'il a a transmettre.

Une fois les données envoyées, 'émetteur passe a 1 I'état logique présent sur sa broche RTS1.

Le récepteur voit ce changement d'état et sait donc que c'est la fin de la communication des données, il passe alors I'état
logique de sa broche RTS2a 1.

Ce contrdle n'est tres compliqué et est utilisé lorsque le contrdle de fluxlogiciel ne l'est pas.

Pour terminer, parlons du mode fonctionnement. Ce sera trés rapide. @

Mode asynchrone
Le mode asynchrone est en fait I'utilisation de la liaison série comme je viens de l'expliquer dans ce chapitre. Les données sont
envoyées surun fil et lues "a la volée". L'émetteur peut donc envoyer des informations plus rapidement que le récepteur ne les
traite, sans controle de flux.

Mode synchrone
Le mode synchrone utilise un signal d'horloge pour synchroniser I'émetteur et le récepteur lors d'une transmission. Ainsi, les

deuxdispositifs (ou plus) connaissent exactement la durée d'un bit et sont ainsi capable de dissocier les parasitent des bits de
données. Cependant cette solution a ses limites lorsque l'on veut utiliser la liaison série sur de longues distances. D'autres

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 200/326

moyens sont envisageables, en utilisant seulement trois fils et en envoyant le signal d'horloge sur le fil de transmission des
données.

Je ne vous en dirait pas plus, n'étant pas au point sur ce sujet et puis cela ne releve que de la culture électronique, on
utilisera jamais, nous, cette méthode de transmission.

Les différentes cartes Arduino
Selon les cartes Arduino que vous utilisez, vous pourrez utiliser une seule ou plusieurs liaisons séries. Par exemple, la carte
Arduino Mega propose 4 voies séries différentes. La carte Arduino ADK (interfacer avec Android) propose elle aussi 4 voies
séries. Lorsque vous utilisez les voies séries, vous faites appel a un objet Serial (nous verrons ¢a plus loin dans le cours). Ainsi,
lorsqu'iln'y a qu'une seule voie série, l'objet utilisé est "Serial". Ensuite, s'il y a d'autres voies séries on aura les objets "Seriall",
"Serial2" puis "Serial3".

Les autres moyens de communication
Comme énoncé bri¢vement plus tot, la voie série n'est pas le seul moyen de communication existant sur Arduino. En effet, il
existe une multitude de types de connexion, natives ou non et plus ou moins difficiles a mettre en place. On citera par exemple
IT*C, qui est une communication de type "Maitre/Esclave" et est intégré nativement a Arduino grace a la librairie "Wire".

De maniére native, il y a aussi la librairie "SPI" qui permet d'utiliser la communication du méme nom.

Enfin, le Shield Ethernet vous permet de raccorder une liaison de type Ethernet a votre carte Arduino.

Entre l'ordinateur et la carte Arduino

La liaison série entre la carte Arduino et l'ordinateur est établie a travers le port USB. En fait, ce port USB n'est pas utilisé avec le
protocole USB, mais avec celui de la liaison série !

Ceciest donc géré par la carte Arduino et iln'y a rien & paramétrer.
Entre deux cartes Arduino

Pour relier deux cartes Arduino en liaison série, rien de plus simple ! En effet, il suffit de connecter les broches Tx et Rxensemble,
de cette maniére :

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 201/326

Sur la premiére carte : Tx en vert ; Rx en orange
Sur la deuxieme, c'est inversé !

Entre une carte Arduino et un autre micro controleur

La, c'est la méme chose que pour connecter deuxArduino ensemble. Il faut relier le Tx et le Rxde la carte Arduino au Rxet au Tx
du micro-contrdleur.

La transmission par voie série se fait, bien entendu, grace a I'¢lectricité. Cependant, les niveaux électriques (les tensions) ne sont
pas les mémes du coté de l'ordinateur ou du c6té de Arduino. En effet, l'ordinateur utilise des tensions entre -12V et +12V
(moyenne) alors que Arduino utilise pour sa part des tensions de 0 ou +5V.

e Mais alors comment font-ils pour se comprendre ?

Bonne question, a laquelle nous allons répondre maintenant.

L'ordinateur
Comme dit ci-dessus, l'ordinateur utilise des niveauxde -12V a +12V (de maniére habituelle, mais ils sont en réalité entre -3/-24V
et +3/+24V). Et dans ce petit monde, tout est a l'envers. Les niveaux "positifs" représentent un état bas (un '0' logique), alors
qu'un niveau haut (le '1' logique) est représenté par les tensions négatives.

Arduino

En électronique, et donc dans le cas de 'Arduino, on n'aime pas trop les tensions élevées et/ou négatives. En revanche, on
apprécie énormément les tensions de OV ou 5V (que l'on appelle niveau "TTL").

Pour que les deux composants puissent communiquer, on effectue une "adaptation de niveau", que l'on va étudier (rapidement)
maintenant.
Adaptation de niveaux

Afin de faire cette conversion, un composant est placé entre les deuxsupports. Le but de ce composant sera de faire 'adaptation
afin que tout le monde se comprenne. Dans le cas de I'Arduino, c'est un cas un peu particulier puisque ce méme composant sert

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 202/326

aussia émuler une voie série. Ainsi, lorsque vous branchez la carte sur votre USB d'ordinateur, ce dernier détecte
automatiquement un nouvel appareil avec lequel il est possible de communiquer par voie série.

Avec un ordinateur

Pour faire une communication avec un ordinateur, rien de plus simple... ou pas ! Depuis le début je vous parle d'un port série puis
de prise type DB9. De nos jours, elles sont en voie d'extinction ! Mais les développeurs ont pensé a cet événement. La carte
Arduino, plutét que d'étre branché sur un port série classique sera donc branché sur 'USB. Les niveaux seront donc toujours du
5V maximum. Ensuite, un composant intégré a Arduino se chargera de simuler une voie série et tout devient transparent pour
votre ordinateur. Il vous suffit donc juste d'utiliser le cable USB et de le relier.

Avec un autre systéeme électronique

Pour communiquer avec un autre appareil électronique en voie série (une autre carte Arduino par exemple), il faut juste suivre
quelques étapes :

1. Coupezl'alimentation de chacune des cartes

2. Branchezle Txde l'un sur le Rxde l'autre et vice-versa

3. Relié un fil de masse entre les deuxcartes sil'alimentation est différente entre les deux (cela permet d'avoir une référence
¢électrique entre les deuxsystémes, une sorte de 'zéro commun')

Mise en garde

votre carte (sic'est une UNO, sinon se référer aux broches Tx/Rx de votre carte). Cela perturberait votre communication

ﬁ Lorsque vous faites des montages "Voie Série <-> Ordinateur", ne branchez JAMAIS de fils sur les broches O et 1 de
voir endommager la carte.

Vous savez maintenant quasiment tout du principe de communication de la liaison série.

Nous allons maintenant pouvoir passer a la pratique et commencer a utiliser cette liaison avec Arduino et envoyer et recevoir
nos premieres données.

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 203/326

Envoyer/Recevoir des données

Dans ce chapitre, nous allons apprendre a utiliser la liaison série avec Arduino. Nous allons voir comment envoyer puis recevoir
des informations avec l'ordinateur, enfin nous ferons quelques exercices pour vérifier que vous avez tout compris.

Vous allez le découvrir bientot, 'utilisation de la liaison série avec Arduino est quasiment un jeu d'enfant, puisque tout est
opaque aux yeuxde lutilisateur...

Petite introduction sur la liaison série : la liaison série est un moyen de communication utilisé pour faire communiquer entre eux
plusieurs dispositifs. On retrouve cette liaison sur les ordinateurs, par exemple, ou sur des appareils électroniques (onduleurs,
...). Cette liaison est aussi utilisée dans le milieu industriel.

L'avantage de la liaison série, c'est de pouvoir émettre des informations d'un dispositif a un autre pour, par exemple, créer un
systéme de domotique, afficher la température extérieure sur I'écran de son ordinateur, etc. On trouve une infinité de possibilités
d'utilisation.

O J'ai choisid'introduire la liaison série avant les grandeurs analogiques car nous allons l'utiliser pour communiquer la

tension présente sur une broche analogique de I'Arduino vers I'ordinateur.

Notre objectif, pour le moment, est de communiquer des informations de la carte Arduino vers l'ordinateur et inversement. Pour
ce faire, on va d’abord devoir préparer le terrain.

Pour pouvoir utiliser la communication de l'ordinateur, rien de plus simple. En effet, Lenvironnement de développement Arduino
propose de base un outil pour communiquer. Pour cela, il suffit de cliquer sur le bouton (pour les versions antérieures a la

version 1.0) dans la barre de menu pour démarrer I'outil. Pour la version 1.0, I'icdne a changé et de place et de visuel :

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

204/326

.
sketch_jan26a | Arduino 1.0 E=REER

File Edit Sketch Tools Help

sketch_jan26a

Arduineg Duemilano

Une nouvelle fenétre s'ouvre : c'est le terminal série :

www.siteduzero.com

Seriz

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 205/326

[|2 comt EENEERTSC
|

vitesse en bauds

N\

[/] Autoscroll Nolineending » | |9600baud +

Dans cette fenétre, vous allez pouvoir envoyer des messages sur la liaison série de votre ordinateur (qui est émulée par
I'Arduino) ; recevoir les messages que votre Arduino vous envoie ; et régler deux trois parametres tels que la vitesse de
communication avec 'Arduino et l'autoscroll qui fait défiler le texte automatiquement. On verra plus loin & quoi sert le dernier
réglage.

L'objet Serial

Pour utiliser la liaison série et communiquer avec notre ordinateur (par exemple), nous allons utiliser un objet (une sorte de
variable mais plus évoluée) qui est intégré nativement dans l'ensemble Arduino : 'objet Serial.

On verra (beaucoup) plus loin ce que sont réellement des objets. On apprendra a en créer et a les utiliser lorsque l'on

Pour le moment, considérez qu'un objet est une variable évoluée qui peut exécuter plusieurs fonctions.
ﬂ abordera le logiciel Processing.

Cet objet rassemble des informations (vitesse, bits de données, etc.) et des fonctions (envoi, lecture de réception,...) sur ce qu'est
une voie série pour Arduino. Ainsi, pas besoin pour le programmeur de recréer tous le protocole (sinon on aurait du écrire nous
méme TOUT le protocole, tel que "Ecrire un bit haut pendant 1 ms, puis 1 bit bas pendant 1 ms, puis le caractére 'a' en 8§ ms...),
bref, on gagne un temps fou et on évite les bugs !

Le setup

Pour commencer, nous allons donc initialiser l'objet Serial. Ce code sera a copier a chaque fois que vous allez créer un programme
qui utilise la liaison série.

Le logiciel Arduino a prévu, dans sa bibliotheque Serial, tout un tas de fonctions qui vont nous étres trés utiles, voir méme
indispensables afin de bien utiliser la liaison série. Ces fonctions, je vous les laisse découvrir par vous méme sivous le
souhaitez, elles se trouvent sur cette page.

Dans le but de créer une communication entre votre ordinateur et votre carte Arduino, il faut déclarer cette nouvelle

communication et définir la vitesse a laquelle ces deux dispositifs vont communiquer. Et oui, si la vitesse est différente, Arduino
ne comprendra pas ce que veut lui transmettre l'ordinateur et vice versa ! Ce réglage va donc se faire dans la fonction setup, en

www.siteduzero.com

http://processing.org/
http://arduino.cc/en/Reference/Serial
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 206/326

utilisant la fonction begin () de l'objet Serial.

9600 bauds on enverra jusqu'a 9600 '0' ou 'l' en une seule seconde. Les vitesses les plus courantes sont 9600, 19200 et

O Lors d'une communication informatique, une vitesse s'exprime en bits par seconde ou bauds. Ainsi, pour une vitesse de
115200 bits par seconde.

Code : C

void setup ()
{

Serial.begin(9600); //on démarre la liaison en la réglant a une
vitesse de 9600 bits par seconde.

}

A présent, votre carte Arduino a ouvert une nouvelle communication vers l'ordinateur. Ils vont pouvoir communiquer ensemble.

Le titre est piégeur, en effet, cela peut étre I'Arduino qui envoie des données ou l'ordinateur. Bon, on est pas non plus dénué
d'une certaine logique puisque pour envoyé des données a partir de l'ordinateur vers la carte Arduino il suffit d'ouvrir le terminal
série et de taper le texte dedans ! @ Donc, on va bien programmer et voir comment faire pour que votre carte Arduino envoie

des données a l'ordinateur.

@ Et ces données, elles proviennent d'ou ?

Eh bien de la carte Arduino... En fait, lorsque l'on utilise la liaison série pour transmettre de l'information, c'est qu'on en a de
l'information a envoyer, sinon cela ne sert a rien. Ces informations proviennent généralement de capteurs connectés a la carte ou
de son programme (par exemple la valeur d'une variable). La carte Arduino traite les informations provenant de ces capteurs, s'il
faut elle adapte ces informations, puis elle les transmet. On aura l'occasion de faire ¢ca dans la partie dédiée aux capteurs, comme
afficher la température sur son écran, l'heure, le passage d'une personne, etc.

Dans un premier temps, nous allons utiliser l'objet Serial pour tester quelques envois de données. Puis nous nous attélerons a un
petit exercice que vous ferez seul ou presque, du moins vous aurez eu auparavant assez d'informations pour pouvoir le réaliser
(ben oui, sinon c'est plus un exercice !).

Phrase ? Caractere ?

On va commencer par envoyer un caractére et une phrase. A ce propos, savez-vous quelle est la correspondance entre un
caractere et une phrase ? Une phrase est constituée de caractéres les uns a la suite des autres. En programmation, on parle plutot
de chaine caractéres pour désigner une phrase.

e Un caractére seul s'écrit entre guillemets simples :'A','a’,"2','l', ...

e Une phrase est une suite de caractére et s'écrit entre guillemets doubles : "Salut tout le monde", "J'ai42 ans", "Vive Zozor

'H
Pour vous garantir un succes dans le monde de I'informatique, essayez d'y penser et de respecter cette convention,
écrire 'A' ce n'est pas pareil qu'écrire "A" !
print () et println()

La fonction que l'on va utiliser pour débuter, s'agit de print () et de son acolyte println (). Ces deuxfonctions sont
quasiment identiques, mais a quoi servent-elles ?

e print () :cette fonction permet d'envoyer des données sur la liaison série. On peut par exemple envoyer un caractére,

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 207/326

une chaine de caractére ou d'autres données dont je ne vous ai pas encore parlé.

e println () :c'estla méme fonction que la précédente, elle permet simplement un retour a la ligne a la fin du message
envoyé.

Pour utiliser ces fonctions, rien de plus simple :

Code : C

Serial.print ("Salut les zéros !M);

Bien siir, au préalable, vous devrez avoir "déclaré/créé" votre objet Serial et définis une valeur de vitesse de communication :

Code : C

void setup ()
{

Serial.begin (9600); //création de 1'objet Serial (=établissement
d'une nouvelle communication série)

Serial.print ("Salut les zéros !'M);
les zéros !" sur la liaison série

}

//envoie de la chaine "Salut

Cet objet, parlons-en. Pour vous aider a représenter de fagon plus concise ce qu'est 'objet Serial, je vous propose cette petite
illustration de mon propre chef':

Programme

Objet Serial

fonctions :
appel des
fonctions

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

208/326

Comme je vous le présente, l'objet Serial est muni d'un panel de fonctions qui lui sont propres. Cet objet est capable de réaliser
ces fonctions selon ce que le programme lui ordonne de faire. Donc, par exemple, quand j'écris : Serial.print ("Salut
les zéros !"); ehbien je demande a mon objet Serial d'exécuter la fonction print () en lui passant pour parametre la

chaine de caractére : "Salut les zeros !".
On peut compléter le code précédent comme ceci :

Code : C

void setup ()

{
Serial.begin (9600) ;

Serial.print ("Salut les zéros ! "); //l'objet exécute une
premiere fonction
Serial.println("Vive Zozor !"); //puis une deuxieme fonction,

différente cette fois-ci
Serial.println("Cette phrase passe en dessous des deux
précédentes"); //et exécute a nouveau la méme

}

Sur le terminal série, on verra ceci :

Code : Console

Salut les zéros ! Vive Zozor !
Cette phrase passe en dessous des deux précédentes

Apres cette courte prise en main de l'objet Serial, je vous propose de découvrir plus en profondeur les surprises que nous

réserve la fonction print ().

O Petite précision, je vais utiliser de préférence println () poursauter des lignes, mais je rappel que cette fonction fait

la méme chose que print ().

Résumons un peu ce que nous venons d'apprendre : on sait maintenant envoyer des caractéres sur la liaison série et des
phrases. Cest déja bien, mais ce n'est qu'un trés bref apercu de ce que l'on peut faire avec cette fonction.
Envoyer des nombres

Avec la fonction print (), il est aussipossible d'envoyer des chiffres ou des nombres car ce sont des caractéres :

Code : C

void setup ()

{
Serial.begin (9600) ;

Serial.println(9); //chiffre
Serial.println (42); //nombre
Serial.println(32768) ; //nombre

Serial.print (3.1415926535); //nombre a virgule

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 209/326

Code : Console

42
32768
3.14

@ Tiens, le nombre pin'est pas affiché correctement ! C'est quoi le bug ?

Rassurez-vous, ce n'est ni un bug, ni un oubli inopiné de ma part. @ En fait, pour les nombres décimaux, la fonction print ()

affiche par défaut seulement deux chiffres apres la virgule. C'est la valeur par défaut et heureusement elle est modifiable. Il suffit
de rajouter le nombre de décimales que l'on veut afficher :

Code : C

void setup ()

{
Serial.begin (9600);

Serial.println(3.1415926535, 0);
Serial.println(3.1415926535, 2); //valeur par défaut
Serial.println(3.1415926535, 4);
Serial.println(3.1415926535, 10);

Code : Console

.14
.1415
.1415926535

Envoyer la valeur d'une variable

La encore, on utilise toujours la méme fonction (qu'est-ce qu'elle polyvalente !). Ici aucune surprise. Au lieu de mettre un
caractére ou un nombre, il suffit de passer la variable en paramétre pour qu'elle soit ensuite affichée a I'écran :

Code : C
int variable 512;
char lettre = 'a';

void setup ()

{
Serial.begin (9600) ;

Serial.println(variable);
Serial.print (lettre);

Code : Console

512

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 210/326

a

Trop facile n'est-ce pas ?

Envoyer d'autres données

Ce n'est pas fini, on va terminer notre petit tour avec les types de variables que l'on peut transmettre grace a cette fonction
print () surla liaison série.

Prenons l'exemple d'un nombre choisi judicieusement : 65.

@ Pourquoi ce nombre en particulier ? Et pourquoipas 12 ou 900 ?

Eh bien, c'est relatif a la table ASCII que nous allons utiliser dans un instant.

Tout d'abord, petit cours de prononciation, ASCII se prononce comme sion disait "A ski", on a donc : "la table a ski"
en prononciation phonétique.

La table ASCII, de 'américain "American Standard Code for Information Interchange", soit en bon frangais : "Code américain
normalisé pour I'échange d'information" est, selon Wikipédia :

Citation : Wikipédia

"la norme de codage de caractéres en informatique la plus connue, la plus ancienne et la plus largement compatible"

En somme, c'est un tableau de valeurs codées sur 8bits qui a chaque valeur associent un caractére. Ces caractéres sont les lettres
de l'alphabet en minuscule et majuscule, les chiffres, des caractéres spéciauxet des symboles bizarres.

Dans cette table, il y a plusieurs colonnes avec la valeur décimale, la valeur hexadécimale, la valeur binaire et la valeur octale
parfois. Nous n'aurons pas besoin de tout ¢a, donc je vous donne une table ASCII "allégée".

Secret (cliquez pour afficher)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

211/326

Dec Hex MName Char Ctrl-char |Dec Hex Char |Dec Hex Char|Dec Hex Char
a 0 Mol WUL CTRL-@ [32 20 Space|[f4 40 @ [96 60 °
1 1 Start of heading SOH CTRL-A 43 21 1 65 41 A 9F 61 a
2 |2 Start of bext STH CTRL-B |34 22 * 66 42 B 88 62 b
3 3 Endof test ETX CTRL-C |35 23 # 67 43 C g9 62 o
4 4 End of xmit EQT CTRL-D |36 24 ¢ B8 44 D 100 64 d
§ 5 Erquiry ENQ CTRL-E |37 25 % 62 45 E 101 65 =
6 6 Acknowledge ACK CTRL-F |38 26 & 70 46 F 102 66 f
7 F) Bell BEL CTRL-G |28 27 ° J1 47 G 103 67 g
B 2] Backspace BS CTRL-H 40 28 72 48 H 04 68 h
8 9 Horizontd tab HT CTRL-1 |41 29) 73 49 | 105 69 i
10 04& Line fesd LF CTRL-1 |42 2a * T4 48] 106 64
11 0B ertical tab YT CTRL-K |43 2B + 75 4B K 107 6Bk
12 0OC Form feed FF CTRL-L |44 2C 76 4C L 108 6C |
13 0D Carriage feed CR CTRL-M |45 20 - I7 4D M 108 &0 m
14 (€ Shift out S0 CTRL-M a8 ZE : J8 4 N 110 6E n
15 (OF Shiftin g1 CTRL-O |47 (2F 39 4 O 111 6F o
16 10 Dataline escape OLE CTRL-P 48 30 0 80 50 P 112 70 p
17 11 Device control 1 DCl CTRL-Q |48 31 1 Bl 51 0Q 113 71 g
18 12 Device control 2 Dc2 CTRL-R |50 32 2 g2 52 R 114 72 r
19 13 Devwice contral 3 DC3 CTRL-S S5 33 3 B 53 S 115 73 s
20 14 Devicecontral4 DC4 CTRL-T |52 34 4 g4 54 T 116 74 t
21 |15 Negacknowedpe HNAE CTRL-U SAN 35 5 B5 55 U W 7ms u
22 |16 Synchronousidle SYN CTRL-V 5% 36 6 B 156 Vv 118 76 v
23 17 Endof smitblock ETE CTRL-W |55 37 7 87 57 W 119 77w
24 18 Cancel CAN CTRL-¥ |56 38 & B8 = X 120 72 ¥
25 19 End of madium EM CTRL-Yy |57 39 9 B9 59 ¥ 121 79y
26 14 Subshbute SUB CTRL-Z |58 3a oo s5a 2 122 78 2
27 1B Escape ESC CTRL-[58 38 ; 91 SB | 123 78 |
28 1T File separator FS CTRL-Y 60 (3 < g2 5C 1287 |
289 1D Group separator G5 CTRL-] 6l 30 = g3 5D] 125 70}
20 I1Ef FRecordseparator RS CTRL-™~ |62 3E = 54 SE 0~ 126 7E ~
31 IF Unit separator Us CTRL- 63 3IF 7 95 SF 127 7F DEL
Dec Hex Char |Dec Hex Char |[Dec Hex Char [Dec Hex Char
126 &0 G 160 Al] 192 o L 224 ED o
129 Bl] 161 Al i 193 o | 4 225 El 13
130 g2 g 162 A2 [194 2 - 226 E2 r
13 g3 & 163 A3 1] 185 3 F 227 E3 m
132 o4] 164 A4 fi 156 C4 - 228 E4 z
133 B5 3 165 AL] 157 cs + 2249 ES o
134 B5 3 166 AE . 198 CE E 230 E& H
135 &7 C 167 AT = 198 4 F 231 EF 1
136 &8] 168 AR 4 200 ca k 232 E8 1]
137 B9 & 169 Ag - 201 (] £ 233 EA]
138 24 & 170 Al 5 202 CA 4 234 EA 0
139 8B 0 171 AR Ya 203 CE - 235 EB il
140 eC i 172 A Y 204 cC - 236 EC L]
141 ED i 173 AD I 205 ch = 237 ED B
142 EE A 174 AE € 206 CE = 238 EE]
143 BF A 175 AF » 207 CF i 239 EF n
144 a0 E 176 BO 208] i 240 FO =
145 91 s 177 B1 55 20a 01 = 241 F1 +
146 92 .2 178 B2 B 210 o2 T 242 F2 2
147 o3 il 179 B3 | 211 03 L 243 F3 £
146 =) i 180 B4 . 212 O O 244 Fd [
149 o5 b 181 Bs q 213 05 F 245 F& |
150 95 i 182 B6 4 214 06 r 246 F& -
151 o7 i 183 &7 1 215 o7 + 247 F7 -
152 S8 i 184 BE 3 216 Ca F 248 F8 e
153 =2 a 185 B9 | 217 (2] 4 249 F9

154 94 0 186 Ba | 218 DA F 250 Fa, .
155 9B ¢ 18F em. 3 219 DB [| 251 FE o
156 Qc £ 186 BC 4 220 D - 252 FC L
157 SO ¥ 189 BD 4 7M1 (0]0] 1 253 FO 2
1568 9E F= 140 BE 4 222 DE | 254 FE .
158 oF i 191 BF 1 233 DF e [2656 FF

Source de la table : http://www.commfront.conv/ascii-chart-table.htm

Voici une deuxiéme table avec les caractéres et symboles affichés :

Secret (cliquez pour afficher)

www.siteduzero.com

http://www.commfront.com/ascii-chart-table.htm
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 212/326
0 32 64 @ % * 128G 160 § 192 L 224
(e 33t 65 A 97 a 129 Ul 61 1 193 L 225 R
Y 66 B 8 b 130€& 162§ 194 T 226
38 35 # 67 C 9 c 131& 13a 195 F 27 g
4 3695 68 D 100 d 1328 164 Ti 196 — 228 @
5 & 37 % & E w1 e 133a 15§ 1994 220
6® 3B & 70 F 102 f 134a& 166 = 1983 230 p
7 e 39 ¢ 71 G 103 9 135 § 167 ¢ 19 4 231 b
s@ 490 C 7 H 104 h 1B6& 168é& 2000 22 P
9 © 41) 73 1 10s i 137 & 169 200 I 233
ol 2= T w06 j 138E 170 4 20208, 234
n & 43 + 75 K 107 k 13917 1m ¥ 200 235
12 9 44 , 7 L 108 1 mof 2% 204 ff 236 §
1B3p 45 _ 7 M 1wom 141§ 173§ 205 = 237 §
14 46 7N oM 12/ 174« 206 ff 238 C
15 % 47 / 70 1M e #3A 175® 2010 239 ¢
6P 480 0P 2P 44 E 176 § 208§ 20 -
74 91 s Q 39 wuse mmE 20D 241 %
83 02 2R nmar e 178 f 20f 242 =
9N 513 8838 uss wd 1| 2w E 243 %
209 52 4 ¢ T 16t 8@ 180 22 24 9
21 8 539 8 0 17w 1490 181 4 23V 25 §
22 - 54 6 86 U 118 v 1s0li 182 § 214 1 246 %
2% 557 W 19w 1s1a 1833 as i 247 -
21t 68 88 X 120 x 152U 184 26 T 248 ®
5 4 579 89 ¥ 1219 3@ uss § 271 249
26 + 58 %0 2 12z 14U 186 || 281 250
-7 I SRR | 18- 9 [34 158 wiWd 200 20 »
2L 60 £ 92 N\ 24 {1 156 £ 1888 20 g 252 3
29 #» 61 = 93] 125 y 1578 189 ¢ 221 | 253 2
30 A 62 > 94 A 126 ~ 158 x 190 ¥ 222] 254 *®
il 63 ? 95 _ 127 & 159 F 191 1 223 M 355

Source de cette table : http://www.lyceedupaysdesoule.fi/infor [...] ble_ascii.htm

Revenons a notre exemple, le nombre 65. C'est en effet grace a la table ASCII que 'on sait passer d'un nombre a un caractére, car
rappelons-le, dans l'ordinateur tout est traité sous forme de nombre en base 2 (binaire).

www.siteduzero.com

http://www.lyceedupaysdesoule.fr/informatique/divers/table_ascii.htm
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 213/326

Donc lorsque l'on code :

Code : C

maVariable = '"A'; //l'ordinateur stocke la valeur 65 dans sa
mémoire (cf. table ASCII)

Sivous faites ensuite :
Code : C

maVariable = maVariable + 1; //la valeur stockée passe a 66 (= 65 +
1)

//a 1'écran, on verra s'afficher la lettre "B"

arabes et quelques signes de ponctuation. Depuis, de nombreuses tables dites "étendues" sont apparues et vont de 0

I Au début, on trouvait une seule table ASCII, qui allait de 0 a 127 (codée sur 7bits) et représentait 'alphabet, les chiffres
a 255 caracteres (valeurs maximales codables surun type char qui fait 8 bits).

@ Et que fait-on avec la fonction print() et cette table ?

La est tout I'intérét de la table, on peut envoyer des données, avec la fonction print(), de tous types ! En binaire, en hexadécimal,
en octal et en décimal.

Code : C

void setup ()

{
Serial.begin (9600) ;

Serial.println (65, BIN); //envoie la valeur 1000001
Serial.println (65, DEC); //envoie la valeur 65
Serial.println (65, OCT); //envoie la valeur 101 (ce n'est pas du
binaire !)
Serial.println (65, HEX); //envoie la valeur 41
}

Vous pouvez donc manipuler les données que vous envoyeza travers la liaison série ! Clest 1a qu'est ’avantage de cette
fonction.

Objectif

Nous allons maintenant faire un petit exercice, histoire de s’entrainer a envoyer des données. Le but, tout simple, est d'envoyer
I'ensemble des lettres de l'alphabet de maniére la plus intelligente possible, autrement dit, sans écrire 26 fois "print();"...

La fonction setup restera la méme que celle vue précédemment. Un délai de 250 ms est attendu entre chaque envoide lettre et un
delay de 5 secondes est attendu entre l'envoi de deuxalphabets.

Bon courage !

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 214/326

Correction
Bon j’espére que tout c'est bien passé et que vous n'avez pas joué au roi du copier/coller en me mettant 26 print...
Secret (cliquez pour afficher)

Code : C

void loop ()
{

char i = 0;
char lettre = 'a'; // ou 'A' pour envoyer en majuscule
Serial.println("-----—- L'alphabet des Zéros —----—-- "); //petit

message d'accueil

//on commence les envois

for (i=0; i<26; i++)

{

Serial.print (lettre); //on envoie la lettre

lettre = lettre + 1; //on passe 4 la lettre suivante
delay(250); //on attend 250ms avant de réenvoyer

}

Serial.println(""); //on fait un retour a la ligne

delay(5000); //on attend 5 secondes avant de renvoyer 1'alphabet
}

Sil'exercice vous a paru trop simple, vous pouvezessayer d'envoyer l'alphabet a I'envers, ou l'alphabet minuscule ET majuscule
ET les chiffres de 04 9...

Amusez-vous bien ! @

Cette fois, il s'agit de 'Arduino quiregoit les données que nous, utilisateur, allons transmettre a travers le terminal série.

Je vais prendre un exemple courant : une communication téléphonique. En régle générale, on dit "Hallo" pour dire a
l'interlocuteur que l'on est prét a écouter le message. Tant que la personne qui appelle n'a pas cette confirmation, elle ne dit rien
(ou dans ce cas elle fait un monologue ®).

Pareillement a cette conversion, l'objet Serial dispose d'une fonction pour "écouter" la liaison série afin de savoir si ouiou non il
y a une communication de données.

On m'a parlé ?

Pour vérifier sion a regu des données, on va réguliérement interroger la carte pour lui demander si des données sont disponibles
dans son buffer de réception. Un buffer est une zone mémoire permettant de stocker des données sur un cours instant. Dans
notre situation, cette mémoire est dédiée a la réception sur la voie série. Il en existe un aussi pour I'envoi de donnée, quimet a la
queue leu leu les données a envoyer et les envoie dés que possible. En résumé, un buffer est une sorte de salle d'attente pour les
données.

Je disais donc, nous allons régulierement vérifier si des données sont arrivées. Pour cela, on utilise la fonction available ()
(de l'anglais "disponible") de I'objet Serial. Cette fonction renvoie le nombre de caractéres dans le buffer de réception de la

liaison série.

Voiciun exemple de traitement :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 215/326

Code : C

void loop ()
{

int donneesALire = Serial.available(); //lecture du nombre de
caractéeres disponibles dans le buffer

if (donneesALire > 0) //si le buffer n'est pas vide

{

//I1 y a des données, on les 1lit et on fait du traitement

}

//on a fini de traiter la réception ou il n'y a rien a lire

O Cette fonction de I'objet Serial, available(), renvoie la valeur -1 quand il n'y a rien a lire sur le buffer de réception.

Lire les données recues

Une fois que l'on sait qu'ily a des données, il faut aller les lire pour éventuellement en faire quelque chose. La lecture se fera tout
simplement avec la fonction... read() !

Cette fonction renverra le premier caractére arrivé non traité (comme les urgences traitent la premiére personne arrivée dans la
salle d'attente avant de passer au suivant). On accéde donc caractére par caractére aux données recues. Sijamais rien n'est a lire
(personne dans la file d'attente), je le disais, la fonction renverra -1 pour le signaler.

Code : C

void loop ()
{

char choselue = Serial.read(); //on 1lit le premier caractere non
traité du buffer

if (choselue == -1) //si le buffer est vide
//Rien a4 lire, rien lu

else //le buffer n'est pas vide
{

//0n a lu un caractere

}

Ce code est une facon simple de se passer de la fonction available().
Le serialEvent

Sivous voulez éviter de mettre le test de présence de données sur la voie série dans votre code, Arduino a rajouter une fonction
qui s'exécute de maniere réguliére. Cette derniére se lance réguliérement avant chaque redémarrage de la loop. Ainsi, si vous
n'avez pas besoin de traiter les données de la voie série 2 un moment précis, il vous suffit de rajouter cette fonction.
Pour l'implémenter c'est trés simple, il suffit de mettre du code dans une fonction nommé "serialEvent()" (attention a la casse) qui
sera a rajouté en dehors du setup et du loop. Le reste du traitement de texte se fait normalement, avec Serial.read par exemple.
Voiciun exemple de squelette possible :

Code : C

const int maled = 11; //on met une LED sur la broche 11
void setup ()

{
pinMode (malLed, OUTPUT); //la LED est une sortie

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

216/326

digitalWrite (malLed, HIGH); //on éteint la LED
Serial.begin (9600); //on démarre la voie série

}

void loop ()
{
delay (500); //fait une tite pause
//on ne fait rien dans la loop
digitalWrite (maLed, HIGH); //on éteint la LED

}

void serialEvent () //déclaration de la fonction d'interruption sur
la voie série
{

while (Serial.read () '= -1); //lit toutes les données (vide le
buffer de réception)

digitalWrite (maLed, LOW); //on allume la LED
}

Voici maintenant un exemple de code complet qui va aller lire les caractéres présents dans le buffer de réception s'ily en a et les

renvoyer tels quels a 'expéditeur (mécanisme d’écho).

Code : C

void setup ()

{
Serial.begin (9600) ;

}

void loop ()
{

char carlu = 0; //variable contenant le caractére a lire
int cardispo = 0; //variable contenant le nombre de caractére
disponibles dans le buffer

cardispo = Serial.available();

while (cardispo > 0) //tant qu'il y a des caractéeres a lire

{

carlu = Serial.read(); //on 1lit le caractere

Serial.print (carlu); //puis on le renvoi a l’expéditeur tel quel

cardispo = Serial.available(); //on relit le nombre de caracteres
dispo

}
//fin du programme

}

Avouez que tout cela n'était pas bien difficile. Je vais donc en profiter pour prendre des vacances et vous laisser faire un exercice

qui demande un peu de réflexion.

Le but de cet exercice est trés simple. L'utilisateur saisit un caractére a partir de l'ordinateur et si ce caractére est minuscule, il est
renvoyé en majuscule ; s'il est majuscule il est renvoyé en minuscule. Enfin, sile caractére n'est pas une lettre on se contente de

le renvoyer normalement, tel qu'il est.

Voila le résultat de mon programme :

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

217/326

Je suppose que grace au superbe tutoriel qui précéde vous avez déja fini sans probléme, n'est-ce pas ? @)

La fonction setup() et les variables utiles

Une fois n'est pas coutume, on va commencer par énumérer les variables utiles et le contenu de la fonction setup().

Pour ce qui est des variables globales, on n'en retrouve qu'une seule, "carlu". Cette variable de type int sert a stocker le caractére

Iu sur le buffer de la carte Arduino. Puis on démarre une nouvelle liaison série a 9600bauds :

Secret (cliquez pour afficher)

Code : C

int carlu; //stock le caractere lu sur la voie série
void setup ()

{
Serial.begin (9600) ;

}

Le programme

Le programme principal n'est pas trés difficile non plus. Il va se faire en trois temps.

e Tout d'abord, on boucle jusqu'a recevoir un caractére sur la voie série
e Lorsqu'on a regu un caractére, on regarde sic'est une lettre
e Sic'est une lettre, on renvoie son acolyte majuscule ; sinon on renvoie simplement le caractére lu

Voici le programme décrivant ce comportement :

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

218/326

Secret (cliquez pour afficher)

Code : C

void loop ()
{

//on commence par vérifier si un caractére est disponible dans

le buffer
if (Serial.available() > 0)
{

carlu = Serial.read(); //lecture du premier caractere
disponible
if(carlu >= 'a' && carlu <= 'z') //Est-ce que c'est un

caractéere minuscule ?

{

carlu = carlu - 'a'; //on garde juste le "numéro de
lettre”
carlu = carlu + 'A'; //on passe en majuscule
}
else if(carlu >= 'A' && carlu <= 'Z') //Est-ce que c'est un
caractere MAJUSCULE ?
{
carlu = carlu - 'A'; //on garde juste le "numéro de
lettre”
carlu = carlu + 'a'; //on passe en minuscule

}

//ni 1'un ni 1'autre on renvoie en tant que BYTE ou alors

on renvole le caractéere modifié
Serial.write(carlu);

Je vais maintenant vous expliquer les parties importantes de ce code.

Comme vu dans le cours, la ligne 4 va nous servir a attendre un caractére sur la voie série. Tant qu'on ne regoit rien, on ne fait

rien !

Sitot que l'on regoit un caractére, on va chercher a savoir sic'est une lettre. Pour cela, on va faire deuxtests. L'un est a la ligne 8

et lautre a la ligne 13. Ils se présentent de la méme fagon :

SIle caractére lu a une valeur supérieure ou égale a la lettre 'a' (ou 'A") ET inférieure ou égale a la lettre 'Z ('Z'), alors on est en

présence d'une lettre. Sinon, c'est autre chose, donc on se contente de passer au renvoi du caractére lu ligne 21.

Une fois que l'on a détecté une lettre, on effectue quelques transformations afin de changer sa casse. Wici les explications a

travers un exemple :

Description Opération (lettre) Opération (nombre) Valeur de carlu
On récupére la lettre 'e' & 101 (el
On isole son numéro de lettre en lui enlevant la valeurde 'a' | e-a 101-97 4
On ajoute ce nombre a la lettre 'A" A+ (e-a) 65+ (101-97) = 69 'E
Il ne suffit plus qu'a retourner cette lettre 'E 69 E

On effectuera sensiblement les mémes opérations lors du passage de majuscule a minuscule.

renvoie I'information sous la forme d'un seul octet. Sinon Arduino enverrait le caractére en tant que 'int', ce qui

@ Alaligne 19, jutilise la fonction write () quienvoie le caractére en tant que variable de type byte, signifiant que l'on

donnerait des problémes lors de l'affichage.

Vous savez maintenant lire et écrire sur la voie série de I'Arduino ! Grace a cette nouvelle corde a votre arc, vous allez pouvoir

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 219/326

ajouter une touche d'interactivité supplémentaire a vos programmes.

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 220/326

[TP] Baignade mterdite

Afin d'appliquer vos connaissances acquises durant la lecture de ce tutoriel, nous allons maintenant faire un gros TP. Il
regroupera tout ce que vous étes censé savoir en terme de matériel (LED, boutons, liaison série et bien entendu Arduino) et je
vous fais aussiconfiance pour utiliser au mieux vos connaissances en terme de "savoir coder" (variables, fonctions, tableaux...).

Bon courage et, le plus important : Amusez-vous bien !

Imaginez-vous au bord de la plage. Le ciel est bleu, la mer aussi... Ahhh le réve. Puis, tout un coup le drapeau rouge se leve !
"Requiilinn" crie un nageur...

L’application que je vous propose de développer ici correspond a ce genre de situation. Vous étes au QGde la zPlage, le nouvel
endroit branché pour les vacances. Votre mission si vous l'acceptez est d'afficher en temps réel un indicateur de qualité de la
plage et de ses flots. Pour cela, vous devez informer les ZTouristes par l'affichage d'un code de 3 couleurs. Des zSurveillants sont
la pour vous prévenir que tout est rentré dans l'ordre siun incident survient.

Comme expliqué ci-dessus, l'affichage de qualité se fera au travers de 3 couleurs qui seront représentées par des LEDs :

e Rouge : Danger, ne pas se baigner
e Orange : Baignade risquée pour les novices
e Vert: Tout baigne !

La zPlage est équipée de deuxboutons. L'un servira a déclencher un SOS (si quelqu'un voit un nageur en difficulté par exemple).
La lumiére passe alors au rouge clignotant jusqu'a ce qu'un sauveteur ait appuyé sur l'autre bouton signalant "Probléme réglé,
tout revient a la situation précédente".

Enfin, dernier point mais pas des moindres, le QG (vous) re¢oit des informations météorologiques et provenant des marins au
large. Ces messages sont retransmis sous forme de textos (symbolisés par la liaison série) aux sauveteurs sur la plage pour qu'ils
changent les couleurs en temps réel. Wici les mots-clés et leurs impacts :

e meduse, tempete, requin : Des animaux dangereux ou la météo rendent la zPlage dangereuse. Baignade interdite
e vague : La natation est réservée auxbons nageurs
e surveillant, calme : Tout baigne, les zSauveteurs sont la et la mer est cool

Vici quelques conseils pour mener a bien votre objectif.

Realisation

- Une fois n'est pas coutume, nommez bien vos variables ! Vous verrez que dés qu'une application prend du volume il est
agréable de ne pas avoir a chercher qui sert a quoi.

- N'hésitez pas a décomposer votre code en fonction. Par exemple les fonctions clignoter () ou changerDeCouleur ()
peuvent-étre les bienvenues.

Précision sur les chaines de caracteres

Lorsque l'on écrit une phrase, on a 'habitude de la finir par un point. En informatique c'est pareil mais a I'échelle du mot ! Je
mlexplique.

Une chaine de caractéres (un mot) est, comme l'indique son nom, une suite de caractéres. Généralement on la déclare de la fagon
suivante :

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 221/326

Code : C

char mot[20] = "coucou"

Lorsque vous faites ¢a, vous ne le voyez pas, l'ordinateur rajoute juste aprés le dernier caractére (ici 'u') un caractére invisible qui
s'écrit \0' (antislash-z&ro). Ce caractére signifie "fin de la chaine". En mémoire, on a donc :

mot[0] | '¢’
mot[1] | 'o'
mot[2] | 'u'
mot[3] | '¢’
mot[4] | 'o'
mot[5] | 'u'
mot[6] | \0'

Ce caractere est tres important pour la suite car je vais vous donner un petit coup de pouce pour le traitement des mots
regus.

Une bibliothéque, nommée "string" (chaine en anglais) et présente nativement dans votre logiciel Arduino, permet de traiter des
chaines de caractéres. Vous pourrez ainsi plus facilement comparer deux chaines avec la fonction strcmp (chainel,
chaine?). Cette fonction vous renverra 0 siles deux chaines sont identiques.

Vous pouvez par exemple l'utiliser de la manicre suivante :

Code : C
int resultat = strcmp(motRecu, "requin"); //utilisation de la
fonction strcmp (chainel, chainel?) pour comparer des mots

if (resultat == 0)
Serial.print ("Les chaines sont identiques");

else
Serial.print ("Les chaines sont différentes");

Le truc, c'est que cette fonction compare caractére par caractere les chaines, or celle de droite : "requin" posséde ce fameux\0'
apres le 'n'. Pour que le résultat soit identique, il faut donc que les deux chaines soient parfaitement identiques ! Donc, avant
d'envoyer la chaine tapée sur la liaison série, il faut lui rajouter ce fameux\0'.

difficultés lors de la comparaison des chaines et que vous allez vous balader sur la solution... Mais essayeztout de

Je comprends que ce point soit délicat & comprendre, je ne vous taperais donc pas sur les doigts sivous avezdes
. méme, c'est tellement plus sympa de réussir en réfléchissant et en essayant !

Prenez votre temps, faites-moi quelque chose de beau et amusez-vous bien ! Je vous laisse aussi choisir comment et ou brancher
les composants sur votre carte Arduino.

Voiciune photo d'illustration du montage ainsi qu'une vidéo du montage en action.

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 222/326

Bon Courage !

@ On corrige ?

J'espére que vous avezréussia avoir un bout de solution ou une solution compléte et que vous vous &tes amusé. Sivous étes
énervé sans avoir trouvé de solutions mais que vous avezcherché, ce n'est pas grave, regardez la correction et essayez de
comprendre ou et pourquoi vous avez fait une erreur.

Commengons par le schéma électronique, voici le mien, entre vous et moi, seules les entrées/sorties ne sont probablement pas
les mémes. En effet, il est difficile de faire autrement que comme ceci :

www.siteduzero.com

http://uploads.siteduzero.com/files/342001_343000/342498.jpg
http://www.siteduzero.com

223/326

A

PWM

[
=
UD
—
oS0
e —H 3
p.—r"...
i |
= |
in
LL
=
— s - sexdadsw
bt ses e s eees s o B oo o B
e T ¢ W e ..
e e e .-
—— - - - - W oE w -
lnu-w_-_d -Mi%ihi_iiittiwi .-.w
L — sHebsNawonsonnkha B
L1 T r Y I IR IR TR b &
- 1
Ly

D13
D12
011
D10

WVin

Power

5V

Arduino

V3 5V

385883 8

ndingAnduy |epbig

GND

Analog Input

AS

—t AREF

Partie 3 : [Pratique] Communication par la liaison série

Al

2
|

o
=T

— AD

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 224/326

Quelles raisons nous ont poussés a faire ces branchements ? Eh bien :

e On utilise la liaison série, donc il ne faut pas brancher de boutons ou de LED sur les broches 0 ou 1 (broche de
transmission/réception)

e On utilisera les LED a I'état bas, pour éviter que la carte Arduino délivre du courant

e Les rebonds des boutons sont filtrés par des condensateurs (au passage, les boutons sont actifs a I'état bas)

Poursuivons notre explication avec les variables que nous allons utiliser dans le programme et les paramétres a déclarer dans la
fonction setup().

Les variables globales

Code : C

#define VERT O
#define ORANGE 1
#define ROUGE 2

int etat = 0; //stock 1'état de la situation (vert = 0, orange = 1,
rouge = 2)
char mot[20]; //le mot lu sur la liaison série

//numéro des broches utilisées

const int btn SOS = 2;

const int btn OK = 3;

const int leds([3] = {11,12,13}; //tableau de 3 éléments contenant
les numéros de broches des LED

Afin d'appliquer le cours, on se servira ici d'un tableau pour contenir les numéros des broches des LED. Cela nous évite de
mettre trois fois "int leds xxx"' (vert, orange ou rouge). Bien entendu, dans notre cas, I'intérét est faible, mais ¢a suffira pour
l'exercice.

@ Et c'est quoi ga "#define" ?

Le "#define" est ce que I'on appelle une directive de préprocesseur. Lorsque le logiciel Arduino va compiler votre programme, il
va remplacer le terme défini par la valeur qui le suit. Par exemple, chaque fois que le compilateur verra le terme VERT (en
majuscule), il mettra la valeur 0 a la place. Tout simplement ! C'est exactement la méme chose que d'écrire : const int

btn SOS = 2;

La fonction setup ()

Rien de particulier dans la fonction setup () parrapport a ce que vous avez vu précédemment, on initialise les variables

Code : C

void setup ()

{

Serial.begin (9600); //On démarre la voie série avec une vitesse de
9600 bits/seconde

//réglage des entrées/sorties
//les entrées (2 boutons)

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 225/326

pinMode (btn_SOS, INPUT) :;
pinMode (btn_OK, INPUT) ;

//les sorties (3 LED) éteintes
for (int 1=0; i<3; i++)
{
pinMode (leds[i], OUTPUT) ;
digitalWrite(leds[i], HIGH) ;

Dans le code précédent, l'astuce mise en ceuvre est celle d'utiliser une boucle for pour initialiser les broches en tant que
sorties et les mettre a I'état haut en méme temps ! Sans cette astuce, le code d'initialisation (lignes 11 a 15) aurait été
comme ceci :

Code : C

//on définit les broches, ou les LED sont connectées, en

sortie

pinMode (led vert, OUTPUT);
pinMode (led rouge, OUTPUT) ;
pinMode (led orange, OUTPUT) ;

//0n éteint les LED
digitalWrite(led vert, HIGH);
digitalWrite (led orange, HIGH);
digitalWrite (led rouge, HIGH);

Sivous n'utilisez pas cette astuce dans notre cas, ce n'est pas dramatique. En fait, cela est utilisé lorsque vous avez 20
ou méme 100 LED et broches a initialiser ! C'est moins fatigant comme ¢a... Qui a dit programmeur ?

Algorithme

Prenez I'habitude de toujours rédiger un brouillon de type algorithme ou quelque chose quiy ressemble avant de commencer a
coder, cela vous permettra de mieux vous repérer dans l'endroit ot vous en étes sur l'avancement de votre programme.

Voila 'organigramme que j'ai fait lorsque j'ai commencé ce TP :

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 226/326

3
loop{)

Aftendre I'appul sur
Oui le bouton du

sauveteur en faisant
clignoter la led rouge

b 4

Lire vola
série

|

Afficher drapeau
de coulaurs

Et voila en quelques mots la lecture de cet organigramme:

On démarre la fonction loop
Sion a un appuisur le bouton SOS :
o On commence par faire clignoter la led rouge pour signaler l'alarme
o FEton clignote tant que le sauveteur n'a pas appuyé sur le second bouton
Sinon (ou sil’événement est fini) on vérifie la présence d'un mot sur la voie série
o S'ily a quelque chose a lire on va le récupérer
o Sinon on continue dans le programme
Enfin, on met a jour les drapeaux
Puis on repart au début et refaisons le méme traitement

Fort de cet outil, nous allons pouvoir coder proprement notre fonction 1oop () puis tout un tas de fonctions utiles tout autour.

Fonction loop()

Voici dés maintenant la fonction loop(), qui va exécuter l'algorithme présenté ci-dessus. Vous voyez qu'il est assez "léger" car je
fais appel a de nombreuses fonctions que j'ai créées. Nous verrons ensuite le role de ces différentes fonctions. Cependant, j'ai
fait en sorte quelles aient toutes un nom explicite pour que le programme soit facilement compréhensible sans méme connaitre le
code qu'elles contiennent.

Code : C

void loop ()
{
//on regarde si le bouton SOS est appuyé
if (digitalRead (btn_SOS) == LOW)
{
//si oui, on émet 1'alerte en appelant la fonction prévue a cet
effet

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 227/326

alerte () ;

}

//puis on continu en vérifiant la présence de caractére sur la
liaison série
//s'"il y a des données disponibles sur la liaison série
(Serial.available () renvoi un nombre supérieur a 0)
if (Serial.available())
{
//alors on va lire le contenu de la réception
lireVoieSerie() ;
//on entre dans une variable la valeur retournée
par la fonction comparerMot ()
etat = comparerMot (mot) ;
}
//Puis on met a jour 1'état des LED
allumerDrapeau(etat) ;

}

Lecture des données sur la liaison série

Afin de garder la fonction loop "légére", nous avons rajouté quelques fonctions annexes. La premiére sera celle de lecture de la
liaison série. Son job consiste a aller lire les informations contenues dans le buffer de réception du micro-contréleur. On va lire
les caracteres en les stockant dans le tableau global "mot[]" déclaré plus tot.

La lecture s’arréte sous deux conditions :

e Soit on a trop de caractére et donc on risque d'inscrire des caractéres dans des variables n'existant pas (ici tableau limité a
20 caracteres)
e Soit on a rencontré le caractére symbolisant la fin de ligne. Ce caractére est \n'.

Voici maintenant le code de cette fonction :

Code : C

//1it un mot sur la liaison série (lit jusqu'a rencontrer le
caractere '\n')
void lireVoieSerie (void)

{

int i = 0; //variable locale pour 1'incrémentation des données du
tableau

//on 1lit les caractéres tant qu'il y en a
//0U si jamais le nombre de caractéres lus atteint 19 (limite du
tableau stockant le mot - 1 caractere)
while (Serial.available() > 0 && 1 <= 19)
{
mot[i] = Serial.read(); //on enregistre le caractére lu
delay(10); //laisse un peu de temps entre chaque accés
a la mémoire
i++; //on passe a 1'indice suivant
}
mot[i] = '\0'; //on supprime le caractere '\n' et on le
remplace par celui de fin de chaine '\0'

}

Allumer les drapeaux

Voila un titre & en rendre fou plus d'un ! Vous pouvezranger vos briquets, on en aura pas besoin. @

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 228/326

Une deuxieme fonction est celle permettant d'allumer et d'éteindre les LED. Elle est assez simple et prend un paramétre : le numéro
de la LED a allumer. Dans notre cas : 0, 1 ou 2 correspondant respectivement a vert, orange, rouge. En passant le parametre -1, on
éteint toutes les LED.

Code : C

J*

Rappel du fonctionnement du code qui précede celui-ci

>1it un mot sur la voie série (lit jusqu'a rencontrer le caractére
'\H')

Fonction allumerDrapeau ()

>Allume un des trois drapeaux

>paraméetre : le numéro du drapeau a allumer (note : si le paraméetre
est -1, on éteint toutes les LED)
4

void allumerDrapeau(int numLed)
{

//0On commence par éteindre les trois LED
for (int 3=0; j<3; Jj++)

{

digitalWrite (leds([j], HIGH);

}

//puis on allume une seule LED si besoin
if (numLed != -1)

{

digitalWrite (leds[numLed], LOW) ;

}

/* Note : vous pourrez améliorer cette fonction en
vérifiant par exemple que le parametre ne
dépasse pas le nombre présent de LED

*/
}

Vous pouvez voir ici un autre intérét du tableau utilisé dans la fonction setup() pour initialiser les LED. Une seule ligne permet de
faire 'allumage de la LED concernée !

Faire clignoter la LED rouge

Lorsque quelqu'un appuisur le bouton d'alerte, il faut immédiatement avertir les sauveteurs sur la zPlage. Dans le programme
principal, on va détecter 'appui sur le bouton SOS. Ensuite, on passera dans la fonction alerte() codée ci-dessous. Cette fonction
est assez simple. Elle va tout d'abord relever le temps a laquelle elle est au moment méme (nombre de millisecondes écoulées
depuis le démarrage). Ensuite, on va éteindre toutes les LED. Enfin, et c'est la le plus important, on va attendre du sauveteur un
appuisur le bouton. TANT QUE cet appuin'est pas fait, on change I'état de la LED rouge toute les 250 millisecondes (choix
arbitraire modifiable selon votre humeur). Une fois que l'appui du Sauveteur a été réalisé, on va repartir dans la boucle principale
et continuer ’exécution du programme.

Code : C

//Eteint les LED et fais clignoter la LED rouge en attendant 1'appui
du bouton "sauveteur"

void alerte(void)

{

long temps = millis();

boolean clignotant = false;
allumerDrapeau(-1); //on éteint toutes les LED

//tant que le bouton de sauveteur n'est pas appuyé on fait
clignoté la LED rouge

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 229/326

while (digitalRead (btn OK) != LOW)
{
//S'"il s'est écoulé 250 ms ou plus depuis la derniére
vérification
if(millis () - temps > 250)
{
//on change 1'état de la LED rouge
clignotant = !clignotant; //si clignotant était FALSE, il devient
TRUE et inversement
digitalWrite (1leds[ROUGE], clignotant); //la LEd est allumée au
gré de la variable clignotant
temps = millis(); //on se rappel de la date de dernier passage
}
}
}

Comparer les mots

Et voici maintenant le plus dur pour la fin, enfin j'exagére un peu. En effet, il ne vous reste plus qu'a comparer le mot recu sur la
liaison série avec la banque de données de mots possible. Nous allons donc effectuer cette vérification dans la fonction
comparerMot().

Cette fonction recevra en parametre la chaine de caractéres représentant le mot qui doit étre vérifié et comparé. Elle renverra
ensuite "l'état" (vert (0), orange (1) ou rouge (2)) qui en résulte. Siaucun mot n’a été reconnu, on renvoie "ORANGE" car
incertitude.

Code : C

int comparerMot (char mot[])

{//on compare les mots "VERT" (surveillant, calme)
if (strcmp (mot, "surveillant") == 0)

{return VERT;

if(strcmp(mot, "calme") == 0)

{return VERT;

;/on compare les mots "ORANGE" (vague)

if (strcmp (mot, "vague") == 0)

{return ORANGE;

;/on compare les mots "ROUGE" (meduse, tempete, requin)
if (strcmp (mot, "meduse") == 0)

{return ROUGE;

if(strcmp(mot, "tempete") == 0)

{return ROUGE;

if(strcmp(mot, "requin") == 0)

{return ROUGE;

}

//sil on a rien reconnu on renvol ORANGE
return ORANGE;

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 230/326

Comme vous avez été sage jusqu'a présent, j'ai rassemblé pour vous le code complet de ce TP. Bien entendu, il va de pair avec le
bon céablage des LED, placées sur les bonnes broches, ainsi que les boutons et le reste... Je vous fais cependant confiance pour
changer les valeurs des variables siles broches utilisées sont différentes.

Code : C

#define VERT 0
#define ORANGE 1
#define ROUGE 2

int etat = 0; //stock 1'état de la situation (vert = 0, orange = 1,
rouge = 2)
char mot[20]; //le mot lu sur la liaison série

//numéro des broches utilisées

const int btn SOS = 2;

const int btn OK = 3;

const int leds([3] = {11,12,13}; //tableau de 3 éléments contenant
les numéros de broches des LED

void setup ()

{

Serial.begin (9600); //On démarre la voie série avec une vitesse de
9600 bits/seconde

//réglage des entrées/sorties
//les entrées (2 boutons)
pinMode (btn_ SOS, INPUT) ;
pinMode (btn OK, INPUT);

//les sorties (3 LED) éteintes
for (int i=0; i<3; i++)
{
pinMode (leds[i], OUTPUT) ;
digitalWrite (leds[i], HIGH) ;

void loop ()
{
//on regarde si le bouton SOS est appuyé
if (digitalRead (btn_ SOS) == LOW)
{
//si oui, on émet 1'alerte en appelant la fonction prévue a cet
effet
alerte();

}

//puis on continu en vérifiant la présence de caractére sur la
liaison série

//s'il y a des données disponibles sur la liaison série
(Serial.available () renvoi un nombre supérieur a 0)

if (Serial.available())

{

//alors on va lire le contenu de la réception

lireVoieSerie () ;
//on entre dans une variable la valeur retournée

par la fonction comparerMot ()
etat = comparerMot (mot) ;

}
//Puis on met a jour 1'état des LED

allumerDrapeau (etat);

}

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 231/326

//1it un mot sur la liaison série (lit jusqu'a rencontrer le
caractere '\n')
void lireVoieSerie (void)

{

int i = 0; //variable locale pour 1'incrémentation des données du
tableau

//on 1it les caractéeres tant qu'il y en a
//0U si jamais le nombre de caracteres lus atteint 19 (limite du
tableau stockant le mot - 1 caractere)
while (Serial.available() > 0 && i <= 19)
{
mot[i] = Serial.read(); //on enregistre le caractere lu
delay(10); //laisse un peu de temps entre chaque acces
a la mémoire
i++; //on passe a 1'indice suivant
}
mot[i] = '\0'; //on supprime le caractere '\n' et on le
remplace par celui de fin de chaine '\0'

}

/*

Rappel du fonctionnement du code qui précede celui-ci

>1it un mot sur la voie série (lit jusqu'a rencontrer le caractere
'\n V)

Fonction allumerDrapeau ()

>Allume un des trois drapeaux

>parametre : le numéro du drapeau a allumer (note : si le parametre
est -1, on éteint toutes les LED)
4

void allumerDrapeau (int numLed)
{
//0n commence par éteindre les trois LED
for (int j=0; j<3; Jj++)
{
digitalWrite (leds[j], HIGH);
}
//puis on allume une seule LED si besoin
if (numLed != -1)
{
digitalWrite (leds[numLed], LOW) ;
}

/* Note : vous pourrez améliorer cette fonction en
vérifiant par exemple que le parametre ne

dépasse pas le nombre présent de LED

*/

}

//Eteint les LED et fais clignoter la LED rouge en attendant 1'appui
du bouton "sauveteur"

void alerte(void)

{

long temps = millis();

boolean clignotant = false;
allumerDrapeau(-1); //on éteint toutes les LED

//tant que le bouton de sauveteur n'est pas appuyé on fait
clignoté la LED rouge

while (digitalRead (btn OK) != LOW)

{

//S'1i1l s'est écoulé 250 ms ou plus depuis la derniére
vérification

if(millis() - temps > 250)

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

232/326

{

//on change 1'état de la LED rouge

clignotant = !clignotant; //si clignotant était FALSE,
TRUE et inversement

digitalWrite (leds[ROUGE], clignotant); //la LEd est allumée au

gré de la variable clignotant

temps = millis(); //on se rappel de la date de dernier passage

}
}
}

int comparerMot (char mot[])

{//on compare les mots "VERT" (surveillant, calme)
if (strcmp (mot, "surveillant") == 0)

{return VERT;

if(strcmp(mot, "calme") == 0)

{return VERT;

;/on compare les mots "ORANGE" (vague)

if (strcmp (mot, "vague") == 0)

{return ORANGE;

;/on compare les mots "ROUGE" (meduse, tempete, requin)
if (strcmp (mot, "meduse") == 0)

{return ROUGE;

if(strcmp(mot, "tempete") == 0)

{return ROUGE;

if(strcmp(mot, "requin") == 0)

{return ROUGE;

}

//si on a rien reconnu on renvoi ORANGE
return ORANGE;

il devient

comprendre le pourquoi du comment qui empéche votre programme de fonctionner correctement ! A bons entendeurs.

E Je rappel que sivous n'avez pas réussia faire fonctionner complétement votre programme, aidez vous de celui-ci pour

Je peuxvous proposer quelques idées d'améliorations que je n'ai pas mises en oeuvre, mais qui me sont passées par la téte au

moment ou j'écrivais ces lignes :

Ameéliorations logicielles

Avec lanouvelle version d'Arduino, la version 1.0,; il existe une fonction SerialEvent () quiest exécutée dés qu'ily aun
événement sur la liaison série du micro-contréleur. Je vous laisse le soin de chercher a comprendre comment elle fonctionne et

s'utilise, sur cette page.

Améliorations materielles

www.siteduzero.com

http://arduino.cc/en/Reference/SerialEvent
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 233/326

e On peut par exemple automatiser le changement d'un drapeau en utilisant un systéme mécanique avec un ou plusieurs
moteurs électriques. Ce serait dans le cas d'utilisation réelle de ce montage, c'est-a-dire sur une plage...

e Une liaison filaire entre un PC et une carte Arduino, ce n'est pas toujours la joie. Et puis bon, ce n'est pas toujours facile
d'avoir un PC sous la main pour commander ce genre de montage. Alors pourquoine pas rendre la connexion sans-fil en
utilisant par exemple des modules XBee ? Ces petits modules permettent une connexion sans-fil utilisant la liaison série
pour communiquer. Ainsi, d'un c6té vous avez la télécommande (a base d'Arduino et d'un module XBee) de l'autre vous
avez le récepteur, toujours avec un module XBee et une Arduino, puis le montage de ce TP avec 'amélioration
précédente.

Sérieusement sice montage venait a étre réalité avec les améliorations que je vous ai données, prévenez-moi par MP et faites en
une vidéo pour que l'on puisse l'ajouter en lien ici méme !

Voila une grosse tache de terminée ! J’espere qu'elle vous a plu méme sivous avez pu rencontrer des difficultés. Souvenez-vous,
"a vaincre sans difficulté on triomphe sans gloire", donc tant mieux si vous avez passé quelques heures dessus et, surtout,
j’espére que vous avezappris des choses et pris du plaisir a faire votre montage, le dompter et le faire fonctionner comme vous le
souhaitiez !

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 234/326

[Annexe]| Votre ordmateur et sa liaison sé€rie dans
un autre langage de programmation

Maintenant que vous savez comment utiliser la liaison série avec Arduino, il peut étre bon de savoir comment visualiser les
données envoyées avec vos propres programmes (I'émulateur terminal Windows ou le moniteur série Arduino ne comptent pas

®

Cette annexe a donc pour but de vous montrer comment utiliser la liaison série avec quelques langages de programmation. Les
langages utilisés ci-dessous ont été choisis arbitrairement en fonction de mes connaissances, car je ne connais pas tous les
langages possibles et une fois vu quelques exemples, il ne devrait pas étre trop dur de l'utiliser avec un autre langage.

Nous allons donc travailler avec :

e - Cttet Qt (librairie QextSerialPort)
e -Java
e - C# (donc .Net plus globalement)

(Je suis désolé je ne connais pas le python pour l'instant)

Afin de se concentrer sur la partie "Informatique", nous allons reprendre un programme travaillé précédemment dans le cours. Ce
sera celui de I'exercice : Attention a la casse. Pensez donc a le charger dans votre carte Arduino avant de faire les tests.

Avant de commencer cette sous-partie, il est indispensable de connaitre la programmation en C++ et savoir utiliser le
framework Qt. Si vous ne connaissez pas tout cela, vous pouveztoujours aller vous renseigner avec le tutoriel C++ !

@ Le C++, OK, mais pourquoi Qt ?

J'ai choiside vous faire travailler avec Qt pour plusieurs raisons d'ordres pratiques.

e Qtest multiplateforme, donc les réfractaires a Linux (ou a8 Windows) pourront quand méme travailler.

e Dans le méme ordre d'idée, nous allons utiliser une librairie tierce pour nous occuper de la liaison série. Ainsi, aucun
probléme pour interfacer notre matériel que 'on soit sur un systéme ou un autre !

e Enfin, jaime beaucoup Qt et donc je vais vous en faire profiter

En fait, sachez que chaque systéme d'exploitation a sa maniére de communiquer avec les périphériques matériels. L'utilisation
d'une librairie tierce nous permet donc de faire abstraction de tout cela. Sinon il m'aurait fallu faire un tutoriel par OS, ce qui, on
l'imagine facilement, serait une perte de temps (écrire trois fois environ les mémes choses) et vraiment galére a maintenir.

QextSerialPort est une librairie tierce réalisée par un membre de la communauté Qt. Pour utiliser cette librairie, il faut soit la
compiler, soit utiliser les sources directement dans votre projet.
Leére étape : télécharger les sources

Le début de tout cela commence donc par récupérer les sources de la librairie. Pour cela, rendez-vous sur la page google code du
projet. A partir d'ici vous avez plusieurs choix.

Soit vous récupérez les sources en utilisant le gestionnaire de source mercurial (Hg). Il suffit de faire un clone du dépdt avec la
commande suivante :

Code : Console

hg clone https://code.google.com/p/gextserialport/

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-462291-1-envoyer-recevoir-des-donnees.html#ss_part_4
http://www.siteduzero.com/tutoriel-3-14189-apprenez-a-programmer-en-c.html
http://code.google.com/p/qextserialport/
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 235/326

Sinon, vous pouvezrécupérer les fichiers un parun (une dizaine). C'est plus contraignant mais ¢a marche aussisivous n'avez
jamais utilisé de gestionnaire de sources (mais c'est vraiment plus contraignant !)

y Cette dernicre méthode est vraiment déconseillée. En effet, vous vous retrouverez avec le strict minimum (fichiers
4 sources sans exemples ou docs).

La manipulation est la méme sous Windows ou Linux!

Compiler la librairie

Maintenant que nous avons tous nos fichiers, nous allons pouvoir compiler la librairie. Pour cela, nous allons laisser Qt travailler
a notre place.

e Démarrez QtCreator et ouvrez le fichier .pro de QextSerialPort
e Compilez...
e (lest fini!

Normalement vous avez un nouveau dossier a coté de celui des sources qui contient des exemples, ainsi que les librairies
QExtSerialPort.

Installer la librairie : Sous Linux
Une fois que vous avez compilé votre nouvelle librairie, vous allezdevoir placer les fichiers auxbons endroits pour les utiliser.
Les librairies, qui sont apparues dans le dossier "build" qui vient d'étre créé, vont étre déplacées vers le dossier /usr/lib.

Les fichiers sources qui étaient avec le fichier ".pro" pour la compilation sont a copier dans un sous-dossier "QextSerialPort"
dans le répertoire de travail de votre projet courant.

1 A priori il y aurait un bug avec la compilation en mode release (la librairie générée ne fonctionnerait pas correctement).
ﬂ Je vous invite donc a compiler aussila debug et travailler avec.
Installer la librairie : Sous Windows

@ Ce point est en cours de rédaction, merci de patienter avant sa mise en ligne. @

Infos a rajouter dans le .pro
Dans votre nouveau projet Qt pour traiter avec la liaison série, vous aller rajouter les lignes suivantes a votre .pro :

Code : Autre

INCLUDEPATH += QextSerialPort

CONFIG (debug, debug|release):LIBS += -lgextserialportd
else:LIBS += -lgextserialport

La ligne "INCLUDEPATH" représente le dossier ou vous avezmis les fichiers sources de QextSerialPort. Les deux autres lignes
font le lien vers les librairies copiées plus tot (les .so ou les .dll selon votre OS).

www.siteduzero.com

http://code.google.com/p/qextserialport/source/browse/#hg/src
http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 236/326

L'interface utilisée

Comme expliqué dans l'introduction, nous allons toujours travailler sur le méme exercice et juste changer le langage étudié. Voici
donc l'interface sur laquelle nous allons travailler, et quels sont les noms et les types d'objets instanciés :

SdZ terminal voie série ®
Port: | /dev/tbyACMO = | Vitesse: (9600 = | | Connecter |
Emission:

Réception:

Cette interface posséde deux parties importantes : La gestion de l1a connexion (en haut) et I'échange de résultat (milieu ->
émission, bas -> réception).

Dans la partie supérieure, nous allons choisir le port de I'ordinateur sur lequel communiquer ainsi que la vitesse de cette
communication. Ensuite, deuxboites de texte sont présentes. L'une pour écrire du texte a émettre, et l'autre affichant le texte regu.
Voici les noms que j'utiliserai dans mon code :

Widget Nom Role

QComboBox | comboPort Permet de choisir le port série

QComboBox | combo Vitesse | Permet de choisir la vitesse de communication

QButton btnconnexion | (Dé)Connecte la voie série (bouton "checkable")

QTextEdit boxEmission | Nous écrirons ici le texte a envoyer

QTextEdit boxReception | Ici apparaitra le texte & recevoir

Lister les liaisons séries

Avant de créer et d'utiliser l'objet pour gérer la voie série, nous allons en voir quelques-uns pouvant &tre utiles. Tout d'abord,
nous allons apprendre a obtenir la liste des ports série présents sur notre machine. Pour cela, un objet a été créé spécialement, il
s'agit de QextSerialEnumerator. En paralléle, nous allons utiliser un autre objet pour stocker les informations des ports, il
s'appelle QextPortInfo. Wiciun exemple de code leur permettant de fonctionner ensemble :

Code : C++

QextSerialEnumerator enumerateur; //L'objet mentionnant les infos
QList<QextPortInfo> ports = enumerateur.getPorts();//on met ces
infos dans une liste

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 237/326

Une fois que nous avons récupéré une énumération de tous les ports, nous allons pouvoir les ajouter au combobox qui est
censé les afficher (comboPort). Pour cela on va parcourir la liste construite précédemment et ajouter a chaque fois une item dans
le menu déroulant :

Code : C++

//on parcourt la liste des ports
for (int i=0; i<ports.size(); i++)
ui->ComboPort->addItem (ports.at (i) .physName) ;

1 Les ports sont nommés différemment sous Windows et Linux, ne soyez donc pas surpris avec mes captures d'écrans,
elles viennent toutes de Linux.

Une fois que la liste des ports est faite (attention, certains ports ne sont connectés a rien), on va construire la liste des vitesses,
pour se laisser le choixle jour ou I'on voudra faire une application a une vitesse différente. Cette opération n'est pas tres
compliquée puisqu'elle consiste simplement a ajouter des items dans la liste déroulante "combo Vitesse".

Code : C++

ul->comboVitesse->addItem ("300") ;

ui->comboVitesse->addItem ("1200") ;
ui->comboVitesse->addItem ("2400") ;
ui->comboVitesse->addItem ("4800") ;
ul->comboVitesse->addItem ("9600") ;
ul->comboVitesse->addItem("14400") ;
ui->comboVitesse->addItem ("19200") ;
ui->comboVitesse->addItem ("38400") ;
ui->comboVitesse->addItem ("57600") ;
uli->comboVitesse->addItem("115200") ;

Votre interface est maintenant préte. En la démarrant maintenant vous devriez étre en mesure de voir s'afficher les noms des ports
séries existant sur l'ordinateur ainsi que les vitesses. Un clic sur le bouton ne fera évidemment rien puisque son comportement
n'est pas encore implémenté.

Gérer une connexion

Lorsque tous les détails concernant l'interface sont terminés, nous pouvons passer au ceeur de l'application : la communication
série.

La premiére étape pour pouvoir faire une communication est de se connecter (tout comme vous vous connectez sur une borne
WiFiavant de communiquer et d'échanger des données avec cette derniére). C'est le rdle de notre bouton de connexion. A partir
du systéme de slot automatique, nous allons créer une fonction qui va recevoir le clic de l'utilisateur. Cette fonction instanciera
un objet QextSerialPort pour créer la communication, réglera cet objet et enfin ouvrira le canal. Dans le cas ou le bouton était déja
coché (puisqu'il sera "checkable" rappelons-le) nous ferons la déconnexion, puis la destruction de l'objet QextSerialPort créé
auparavant.

Pour commencer nous allons donc déclarer les objets et méthodes utiles dans le .h de la classe avec laquelle nous travaillons :

Code : C++

private:
QextSerialPort * port; //l1'objet représentant le port

BaudRateType getBaudRateFromString (QString baudRate); //une
fonction utile que j'expliquerais apres

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 238/326

private slots:
void on_btnconnexion_clicked(); //le slot automatigue du bouton
de connexion

Ensuite, il nous faudra instancier le slot du bouton afin de traduire un comportement. Pour rappel, il devra :

e Créer l'objet "port" de type QextSerialPort
e Lerégler avec les bons paramétres
e Ouvrir la voie série

Dans le cas ou la liaison série est déja ouverte (le bouton est déja appuyé) on devra la fermer et détruire l'objet.
Voici le code commenté permettant l'ouverture de la voie série (quelques précisions viennent ensuite) :

Code : C++

//Slot pour le click sur le bouton de connexion
void Fenetre::on btnconnexion clicked() {

//deux cas de figures a gérer, solt on coche (connecte), soit
on décoche (déconnecte)

//on coche -> connexion
if (ui->btnconnexion->isChecked()) {
//on essaie de faire la connexion avec la carte Arduino
//on commence par créer 1'objet port série
port = new QextSerialPort();
//on régle le port utilisé (sélectionné dans la liste
déroulante)
port->setPortName (ui->ComboPort->currentText ()) ;
//on régle la vitesse utilisée
port->setBaudRate (getBaudRateFromString (ui->comboVitesse-
>currentText ()));
//quelques reéglages pour que tout marche bien
port->setParity (PAR NONE) ; //parité
port->setStopBits (STOP 1) ;//nombre de bits de stop
port->setDataBits (DATA 8);//nombre de bits de données
port->setFlowControl (FLOW OFF); //pas de contréle de flux
//on démarre !
port->open (QextSerialPort: :ReadWrite) ;
//change le message du bouton
ui->btnconnexion->setText ("Deconnecter") ;

//on fait la connexion pour pouvolir obtenir les événements

connect (port, SIGNAL (readyRead ()), this, SLOT (readData())):
connect (ui-
>boxEmission, SIGNAL (textChanged ()), this, SLOT (sendData())) ;
}
else {

//on se déconnecte de la carte Arduino
port->close() ;

//puis on détruit 1'objet port série devenu inutile
delete port;

ui->btnconnexion->setText ("Connecter") ;

Ce code n'est pas trés compliqué a comprendre. Cependant quelques points méritent votre attention. Pour commencer, pour
régler la vitesse du port série on fait appel a la fonction "setBaudRate". Cette fonction prend un paramétre de type
BaudRateType qui fait partie d'une énumération de QextSerialPort. Afin de faire le lien entre le comboBox qui posséde des
chaines et le type particulier attendu, on crée et utilise la fonction "getBaudRateFromString". A partir d'un simple switch, elle
fera la traduction entre QString et BaudRateType.

Code : C++

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 239/326

BaudRateType Fenetre::getBaudRateFromString (QString baudRate) {
int vitesse = baudRate.toInt () ;
switch (vitesse) {
case (300) :return BAUD300;

case (9600

case (1200) :return BAUD1200;

case (2400) :return BAUD2400;

case (4800) :return BAUD4800;
)

:return BAUD9600;

~ e~~~ o~~~ —~

case (14400) :return BAUD14400;
case(19200) :return BAUD19200;
case (38400) :return BAUD38400;
case (57600) :return BAUD57600;

case(115200) :return BAUD115200;
default:return BAUD9600;

Un autre point important a regarder est l'utilisation de la fonction open() de I'objet QextSerialPort. En effet, il existe plusieurs
fagons d'ouvrir un port série :

e En lecture seule -> QextSerialPort::ReadOnly
e En écriture seule -> QextSerialPort::WriteOnly
e En lecture/écriture -> QextSerialPort::Read Write

Ensuite, on connecte simplement les signaux émis par la liaison série et par la boite de texte servant a 'émission (que l'on verra
juste apres).

Enfin, lorsque l'utilisateur re-clic sur le bouton, on passe dans le else quipermet de faire une déconnexion. Pour cela on utilise
la méthode close () et ensuite on supprime l'objet QextSerialPort pour ne pas encombrer inutilement la mémoire. Ces deux
opérations sont aussia faire dans le destructeur de la classe Fenetre quiaffiche l'ensemble (en s'assurant que l'objet port n'est
pas NULL).

1 Ce code présente le principe et n'est pas parfait ! Il faudrait par exemple s'assurer que le port est bien ouvert avant
d'envoyer des données (faire un test i £ (port->1isOpen ()) parexemple).

Maintenant que la connexion est établie, nous allons pouvoir envoyer et recevoir des données. Ce sera le role de deuxslots qui
ont été bricvement évoqués dans la fonction connect () du code de connexion précédent.

Emettre des données

L'émission des données se fera dans le slot "sendData". Ce slot sera appelé a chaque fois qu'il y aura une modification du
contenu de la boite de texte "boxEmission". Pour l'application concemnée (Il'envoid'un seul caractere), il nous suffit de chercher le
demnier caractére tapé. On récupére donc le dernier caractére du texte contenu dans la boite avant de I'envoyer sur la liaison série.
L'envoi de texte se fait a partir de la fonction write () et prend en paramétre un tableau de char, ouun QByteArray. Bonne
nouvelle, les QString peuvent générer des QByteArray en utilisant la méthode toAscii () et on peut donc les utiliser
directement.

Voici le code quiillustre toutes ces explications (ne pas oublier de mettre les déclarations des slots dans le .h) :

Code : C++

void Fenetre::sendData () {

QString caractere = ui->boxEmission->toPlainText ().right (1) ;
//0On récupere le dernier caractéere tapé

if (port != NULL) //si le port est instancié (donc ouvert a
priori)

port->write (caractere.toAscii()):;

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 240/326

Recevoir des données

Le programme étudié est censé nous répondre en renvoyant le caractére émis mais dans une casse opposée (majuscule contre
minuscule et vice versa). En temps normal, deux politiques différentes s'appliquent pour savoir sides données sont arrivées.

La premicre est d'aller voir de maniére réguliére (ou pas) sides caractéres sont présents dans le tampon de réception de la liaison
série. Cette méthode dite de Polling n'est pas trés fréquemment utilisée.

La seconde est de déclencher un événement lorsque des données arrivent sur la liaison série. C'est la forme qui est utilisée par
défaut par l'objet QextSerialPort. Lorsqu'une donnée arrive, un signal (readyRead ()) est émis par l'objet et peut donc
étre connecté a un slot.

Pour changer le mode de fonctionnement, il faut utiliser la méthode setMode () de l'objet QextSerialPort. Le paramétre a
passersera QextSerialPort::PollingouQextSerialPort: :EventDriven pourlaseconde (par défaut).

Comme la connexion entre le signal et le slot est créée dans la fonction de connexion, il ne nous reste qu'a écrire le comportement
du slot de réception lorsqu'une donnée arrive. Le travail est simple et se résume en deux étapes :

e Lire le caractére regu grace a la fonction read () ou readall () delaclasse QextSerialPort

e Le copier dans la boite de texte "réception”

Code : C++

void Fenetre::readData () {
QOByteArray array = port->readAll();
ui->boxReception->insertPlainText (array) ;

Et voila, vous étes maintenant capable de travailler avec la voie série dans vos programmes Qt en C++. Au risque de me répéter,
je suis conscient qu'ily a des lacunes en terme de "sécurité" et d'efficacité. Ce code a pour but de vous montrer les bases de la
classe pour que vous puissiez continuer ensuite votre apprentissage. En effet, la programmation C++/Qt n'est pas le sujet de ce
tutoriel.

dessiné des interfaces et créé des actions sur des boutons par exemple. Cette sous-partie n'est pas la pour vous

ZF\ Dans cette partie (comme dans les précédentes) je pars du principe que vous connaissez le langage et avez déja
28 apprendre le C# !

La encore je vais reprendre la méme structure que les précédentes sous-parties.

L'interface et les imports

Voici tout de suite l'interface utilisée ! Je vous donnerai juste aprés le nom que jlutilise pour chacun des composants (et tant qu'a
faire je vous donnerai aussi leurs types).

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 241/326

r T
o=l SdZ terminal voie série EM

_
Port : COM18 = Vitesse : 9600 - | Comnecter |
Emission
L'interface en C#
Réception

Comme cette interface est la méme pour tout ce chapitre, nous retrouvons comme d'habitude le bandeau pour gérer la connexion
ainsique les deuxboites de texte pour I'émission et la réception des données.

Voici les types d'objets et leurs noms pour le bandeau de connexion :

Compos ant Nom Role

System.Windows .Forms.ComboBox | comboPort Permet de choisir le port série

System.Windows.Forms.ComboBox | combo Vitesse | Permet de choisir la vitesse de communication

System.Windows.Forms.Button btnConnexion | (Dé)Connecte la liaison série (bouton "checkable")

System.Windows.Forms.TextBox boxEmission | Nous écrirons ici le texte a envoyer

System.Windows.Forms.TextBox boxReception | Iciapparaitra le texte a recevoir

Avant de commencer les choses marrantes, nous allons d'abord devoir ajouter une librairie : celle des liaisons séries. Elle se
nomme simplement Ports et vous aurezdonc la ligne suivante a rajouter en haut de votre projet : using
System.IO.Ports;.
Nous allons en profiter pour rajouter une variable membre de la classe de type SerialPort que jlappellerai "port". Cette variable
représentera, vous l'avez deviné, notre port série !

Code : C#

SerialPort port

Maintenant que tous les outils sont préts, nous pouvons commencer !

Lister les liaisons séries

La premicre étape sera de lister I'ensemble des liaisons séries sur l'ordinateur. Pour cela nous allons nous servir d'une fonction
statique de la classe SerialPort. Cette fonction se nomme GetPortNames () et nous renvoie un tableau de String.
Chaque case du tableau sera une chaine de caractére comportant le nom d'une liaison série. Une fois que nous avons ce tableau,
nous allons l'ajouter sur l'interface, dans la liste déroulante prévue a cet effet pour pouvoir laisser le choix a l'utilisateur au

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 242/326

démarrage de l'application.

Dans le méme ¢élan, on va peupler la liste déroulante des vitesses avec quelques-unes des vitesses les plus courantes. Wici le
code de cet ensemble. Personnellement je I'ai ajouté dans la méthode Form Load quise déclenche lorsque la fenétre s'ouvre.
Vous pouviezaussitres bien le mettre dans le constructeur, juste aprés la méthode InitializeComponent () quicharge les
composants.

Code : C#

private void Forml Load(object sender, EventArgs e)
{
//on commence par lister les voies séries présentes
String[] ports = SerialPort.GetPortNames(); //fonction statique
//on ajoute les ports au combo box
foreach (String s in ports)
comboPort.Items.Add(s) ;

//on ajoute les vitesses au combo des vitesses
comboVitesse.Items.Add ("300") ;
comboVitesse.Items.Add ("1200")
comboVitesse.Items.Add ("2400") ;
comboVitesse.Items.Add ("4800") ;
comboVitesse.Items.Add ("9600")
comboVitesse.Items.Add ("14400") ;

(

(

(

(

’

) .
comboVitesse.Items.Add ("19200") ;
comboVitesse.Items.Add ("38400") ;
comboVitesse.Items.Add
comboVitesse.Items.Add

"57600M") ;
"115200") ;

Sivous lancez votre programme maintenant avec la carte Arduino connectée, vous devriez avoir le choixdes vitesses mais aussi
d'au moins un port série. Si ce n'est pas le cas, il faut trouver pourquoi avant de passer a la suite (Vérifiez que la carte est bien
connectée par exemple).

Gérer une connexion

Une fois que la carte est reconnue et que l'on voit bien son port dans la liste déroulante, nous allons pouvoir ouvrir le port pour
établir le canal de communication entre Arduino et l'ordinateur.

Comme vous vous en doutez surement, la fonction que nous allons écrire est celle du clic sur le bouton. Lorsque nous cliquons
sur le bouton de connexion, deux actions peuvent étre effectuées selon I'état précédent. Soit nous nous connectons, soit nous
nous déconnectons. Les deuxcas seront gérés en regardant le texte contenu dans le bouton ("Connecter" ou "Deconnecter").

Dans le cas de la déconnexion, il suffit de fermer le port a l'aide de la méthode close ().

Dans le cas de la connexion, plusieurs choses sont a faire. Dans l'ordre, nous allons commencer par instancier un nouvel objet de
type SerialPort pour notre variable port. Ensuite, nous réglerons cette liaison série avec les différents parametres (vitesse,
parité, nom...) et enfin on pourra ouvrir le port. Chacune de ces étapes est en fait une propriété de notre objet SerialPort. Par
exemple, pour le nom du port a utiliser, c'est la propriété PortName quiest a changer, pour celle des vitesses se sera
BaudRate et ainside suite.

Voici le code commenté pour faire tout cela. Il y a cependant un dernier point évoqué rapidement juste aprés et sur lequel nous
reviendrons plus tard.

Code : C#

private void btnConnexion Click(object sender, EventArgs e)
{
//on gére la connexion/déconnexion
if (btnConnexion.Text == "Connecter") //alors on connecte
{
//crée un nouvel objet voie série
port = new SerialPort();

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 243/326

//réegle la voie série

port.BaudRate =
int.Parse (comboVitesse.SelectedItem.ToString()); //parse en int le
combo des vitesses

port.DataBits = 8;

port.StopBits = StopBits.One;

port.Parity = Parity.None;

port.PortName = comboPort.SelectedItem.ToString() ;
//récupére le nom sélectionné

//ajoute un gestionnaire de réception pour la réception de
donnée sur la voie série

port.DataReceived += new
SerialDataReceivedEventHandler (DataReceivedHandler) ;

port.Open(); //ouvre la voie série

btnConnexion.Text = "Deconnecter";

}

else //sinon on déconnecte

{
port.Close(); //ferme la voie série
btnConnexion.Text = "Connecter";

Le point qui peut paraitre étrange est la ligne 16, avec la propriété DataReceived. En effet, elle est un peu particuliére
puisqu'en fait on lui ajoute une fonction nommée Handler () quidevra étre appelée lorsque des données arriveront. Je vais
vous demander d'étre patient, nous en reparlerons plus tard lorsque nous verrons la réception de données.

A ce stade du développement, lorsque vous lancez votre application vous devriez pouvoir sélectionner une voie série, une
vitesse, et cliquer sur "Connecter" et "Déconnecter” sans aucun bug.

La voie série est préte a étre utilisée ! La connexion est bonne, il ne nous reste plus qu'a envoyer les données et espérer avoir
quelque chose en retour.

Envoyer des données

Pour envoyer des données, une fonction toute préte existe pour les objets SerialPort. Cette fonction (vous le devinez
surement) est : write (). En argument il nous faut passer soit une chaine de caractére (st ring) soit un tableau de char qui
serait envoy¢ un par un. Dans notre cas d'utilisation, c'est ce deuxiéme cas quinous intéresse.

Nous allons donc implémenter la méthode TextChanged du composant "boxEmission" afin de détecter chaque caractére entré
par l'utilisateur. Ainsi, nous enverrons chaque nouveau caractére sur la voie série, un par un. Le code suivant, commenté, vous
montre la voie a suivre.

Code : C#

//lors d'un envol de caractére
private void boxEmission TextChanged(object sender, EventArgs e)
{

//met le dernier caractere dans un tableau avec une seule case
le contenant

char[] car = new char[]
{boxEmission.Text [boxEmission.TextLength-1]};

if (port!=null && port.IsOpen) //on s'assure que le port est
existant et ouvert

port.Write(car,0,1); //envoie le tableau de caractere,

depuis la position 0, et envoie 1 seul élément

}

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série

244/326

Recevoir des données

La derniére étape pour pouvoir gérer de maniére compléte notre liaison série est de pouvoir afficher les caractéres recus. Cette

étape est un petit peu plus compliquée. Tout d'abord, revenons a lI'explication commencée un peu plus tdt. Lorsque nous

démarrons la connexion et créons l'objet SerialPort, nous ajoutons a la propriété DataReceived une fonction (en faisant
un +=). Faire cela équivaut a dire "Va a cette fonction lorsque tu regois des données" . Cette fonction aura ensuite deuxchoses a
faire. Lire le contenu du buffer de réception de la liaison série puis ajouter ces nouvelles données (en théorie un seul caractere) a

la boite de texte boxReception.

Dans l'idéal nous aimerions faire de la facon suivante :

Code : C#

//gestionnaire de la réception de caractére
private void DataReceivedHandler (object sender,
SerialDataReceivedEventArgs e)
{
String texte = port.ReadExisting() ;
boxReception.Text += texte;

Cependant, les choses ne sont pas aussi simples cette fois-ci. En effet, pour des raisons de sécurité sur les processus, C#

interdit que le texte d'un composant (boxReception)soit modifi¢ de mani¢re asynchrone, quand les données arrivent. Pour
contourner cela, nous devons créer une méthode "déléguée" a qui on passera notre texte a afficher et qui se chargera d'afficher

le texte quand l'interface sera préte.

Pour créer cette déléguée, nous allons commencer par rajouter une méthode dite de callback pour gérer la mise a jour du texte.

La ligne suivante est donc a ajouter dans la classe, comme membre :

Code : C#

//une déléguée pour pouvoir mettre a jour le texte de la boite de

réception de maniere "thread-safe"
delegate void SetTextCallback(string text);

Le code de la réception devient alors le suivant :

Code : C#

//gestionnaire de la réception de caractere
private void DataReceivedHandler (object sender,
SerialDataReceivedEventArgs e)
{
String texte = port.ReadExisting();
//boxReception.Text += texte;
SetText (texte);
}

private void SetText (string text)
{
if (boxReception.InvokeRequired)

{

SetTextCallback d = new SetTextCallback (SetText) ;
boxReception.Invoke (d, new object[] { text });

}

else

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 245/326

boxReception.Text += text;

Je suis désolé simes informations sont confuses. Je ne suis malheureusement pas un maitre dans l'art des threads Ul
de C#. Cependant, un tas de documentation mieux expliqué existe sur internet si vous voulez plus de détails.

Une fois tout cela instancié, vous devriezavoir un terminal liaison série tout beau fait par vous méme ! Libre a vous maintenant
toutes les cartes en main pour créer des applications qui communiqueront avec votre Arduino et feront des échanges
d'informations avec.

Cette annexe vous aura permis de comprendre un peu comment utiliser la liaison série en général avec un ordinateur. Avec vos
connaissances vous étes dorénavant capable de créer des interfaces graphiques pour communiquer avec votre arduino. De
grandes possibilités s'offrent a vous, et de plus grandes vous attendent avec les parties qui suivent...

Vous saveztout, ou presque, sur la liaison série. Ce domaine va vous ouvrir des portes vers des possibilités encore plus grande,
telle que la création d'interface graphique pour communiquer par l'intermédiaire de votre ordinateur avec Arduino. Vous pourrez
également créer un réseau complet pour, par exemple, faire un systéme domotique ou je ne sais quoi d'autre tout aussi amusant !

N'hésitez pas a faire part de vos projet sur les forums ! @

www.siteduzero.com

http://www.siteduzero.com

Partie 3 : [Pratique] Communication par la liaison série 246/326

Dans cette partie, je vais introduire la notion de grandeur analogique qui sont opposées au grandeurs logiques. Grice a ce
chapitre, vous serez ensuite capable d'utiliser des capteurs pour interagir avec I'environnement autour de votre carte Arduino
(enfin pas tout a fait puisqu'il faudra pour cela lire le chapitre sur les capteurs @)).

--—-> Matériel nécessaire : dans la balise secret pour la partie 4.

Les entrées analogiques de 1'Arduino

Ce premier chapitre va vous faire découvrir comment gérer des tensions analogiques avec votre carte Arduino. Vus allezd'abord
prendre en main le fonctionnement d'un certain composant essentiel a la mise en forme d'un signal analogique, puis je vous
expliquerai comment vous en servir avec votre Arduino. Rassurez-vous, iln'y a pas besoin de matériel supplémentaire pour ce
chapitre ! @

Faisons un petit rappel sur ce que sont les signauxanalogiques.

D'abord, jusqu'a présent nous n'avons fait qu'utiliser des grandeurs numériques binaires. Autrement dit, nous n'avons utilisé que
des états logiques HAUT et BAS. Ces deuxniveaux correspondent respectivement aux tensions de 5V et OV.

Cependant, une valeur analogique ne se contentera pas d'étre exprimée par 0 ou 1. Elle peut prendre une infinité de valeurs dans
un intervalle donné. Dans notre cas, par exemple, la grandeur analogique pourra varier aisément de 0 & 5V en passant par 1.45V,

2V, 4.99V etc.

Voiciun exemple de signal analogique, le trés connu signal sinusoidal :

Tension

<’\| On retiendra que l'on ne s'occupe que de la tension et non du courant, en fonction du temps.

-

Sion essaye de mettre ce signal (ce que je vous déconseille de faire) sur une entrée numérique de 'Arduino et qu'on lit les
valeurs avec digitalRead(), on ne lira que 0 ou 1. Les broches numériques de I'Arduino étant incapable de lire les valeurs d'un
signal analogique.

Signal périodique

Dans la catégorie des signauxanalogiques et méme numériques (dans le cas d'horloge de signal pour le cadencement des micro-
contréleurs par exemple) on a les signaux dits périodiques .

La période d'un signal est en fait un bout de ce signal qui se répéte et qui donne ainsi la forme du signal. Prenons l'exemple d'un
signal binaire qui prend un niveau logique 1 puis un 0, puis un 1, puis un 0, ...

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-457282-1-presentation.html#ss_part_3
http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 247/326

Période

1lol1]of1]o]1 u|1|
oV >t

La période de ce signal est le motif qui se répéte tant que le signal existe. Ici, c'est le niveau logique 1 et 0 qui forme le motif. Mais
cela aurait pu étre 1 1 et 0,oubien 01 1, voir000 1 1 1, les possibilités sont infinies !

Pour un signal analogique, il en va de méme. Reprenons le signal de tout a I'heure :

Tension
A Période

Ici le motif qui se répéte est "la bosse de chameau" ou plus scientifiquement parlant : une période d'un signal sinusoidal. @

Pour terminer, la période désigne aussi le temps que met un motifa se répéter. Sij'ai une période de lms, cela veut dire que le
motif met 1ms pour se dessiner complétement avant de commencer le suivant. Et en sachant le nombre de fois que se répéte le

: : . 1
motifen 1 seconde, on peut calculer la fréquence du signal selon la formule suivante : ' — —; avec F la fréquence, en Hertz,

du signal et T la période, en seconde, du signal.

Notre objectif
L'objectif va donc étre double.
Tout d'abord, nous allons devoir étre capables de convertir cette valeur analogique en une valeur numérique, que l'on pourra

ensuite manipuler a l'intérieur de notre programme. Par exemple, lorsque I'on mesurera une tension de 2,5V nous aurons dans
notre programme une variable nommée "tension" qui prendra la valeur 250 lorsque l'on fera la conversion (ce n'est qu'un

exemple).
Ensuite, nous verrons avec Arduino ce que l'on peut faire avec les signauxanalogiques.

Je ne vous en dis pas plus...

@ Qu'est-ce que c'est ?

Clest un dispositif qui va convertir des grandeurs analogiques en grandeurs numériques. La valeur numérique obtenue sera
proportionnelle a la valeur analogique fournie en entrée, bien évidemment. Il existe différentes fagons de convertir une grandeur
analogique, plus ou moins faciles a mettre en ceuvre, plus ou moins précises et plus ou moins onéreuses.

Pour simplifier, je ne parlerai que des tensions analogiques dans ce chapitre.

La diversite

Je vais vous citer quelques types de convertisseurs, sachez cependant que nous n'en étudierons qu'un seul type.

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 248/326

e Convertisseur a simple rampe : ce convertisseur "fabrique" une tension qui varie proportionnellement en un cours laps
de temps entre deux valeurs extrémes. En méme temps qu'il produit cette tension, il compte. Lorsque la tension d'entrée
du convertisseur devient égale a la tension générée par ce dernier, alors le convertisseur arréte de compter. Et pour
terminer, avec la valeur du compteur, il détermine la valeur de la grandeur d'entrée. Malgré sa bonne précision, sa
conversion reste assez lente et dépend de la grandeur a mesurer. Il est, de ce fait, peu utilisé.

e Convertisseur flash : ce type de convertisseur génére lui aussides tensions analogiques. Pour étre précis, il en génére
plusieurs, chacune ayant une valeur plus grande que la précédente (par exemple 2V, 2.1V, 2.2V, 2.3V, etc.) et compare la
grandeur d'entrée a chacun de ces paliers de tension. Ainsi, il sait entre quelle et quelle valeur se trouve la tension
mesurée. Ce n'est pas trés précis comme mesure, mais il a I'avantage d'étre rapide et malheureusement cher.

e Convertisseur a approximations successives : Pour terminer, c'est ce convertisseur que nous allons étudier...

Vous vous doutez bien que si je vous parle des CAN, c'est qu'ily a une raison. Votre carte Arduino dispose d'un tel dispositif
intégré dans son cceur : le micro-contréleur. Ce convertisseur est un convertisseur "a approximations successives".

Je vais détailler un peu plus le fonctionnement de ce convertisseur par rapport aux autres dont je n'ai fait qu'un brefapergu de
leur fonctionnement (bien que suffisant).

e
type de convertisseur. Mais je vous recommande vivement de le faire, car il est toujours plus agréable de comprendre

Cecirentre dans le cadre de votre culture générale électronique, ce n'est pas nécessaire de lire comment fonctionne ce
(\I
comment fonctionnent les outils qu'on utilise !@

Principe de dichotomie

La dichotomie, ¢a vous parle ? Peut-étre que le nomne vous dit rien, mais il est stir que vous en connaissez le fonctionnement.
Peut-étre alors connaissez-vous le jeu "plus ou moins" en programmation ? Si oui alors vous allez pouvoir comprendre ce que je
vais expliquer, sinon lisez le principe sur le lien que je viens de vous donner, cela vous aidera un peu.

La dichotomie est donc une méthode de recherche conditionnelle qui s'applique lorsque l'on recherche une valeur comprise entre
un minimum et un maximum. L'exemple du jeu "plus ou moins" est parfait pour vous expliquer le fonctionnement.

Prenons deuxjoueurs.
Le joueur 1 choisit un nombre compris entre deux valeurs extrémes, par exemple 0 et 100. Le joueur 2 ne connait pas ce nombre et

doit le trouver. La méthode la plus rapide pour que le joueur 2 puisse trouver quel est le nombre choisi par le joueur 1 est :

Code : Console

Joueur 1 dit : "quel est le nombre mystere ?"
>40

Joueur 1 dit : "Ce nombre est plus grand"
>80

Joueur 1 dit : "Ce nombre est plus petit"
>60

Joueur 1 dit : "Ce nombre est plus grand"
>70

Joueur 1 dit : "Ce nombre est plus grand"
>75

Joueur 1 dit : "Ce nombre est plus petit"
>72

Bravo, Joueur 2 a trouvé le nombre mystere !

www.siteduzero.com

http://www.siteduzero.com/tutoriel-3-13976-tp-plus-ou-moins-votre-premier-jeu.html#ss_part_1
http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 249/326

Je le disais, le joueur 2, pour arriver le plus rapidement au résultat, doit choisir une méthode rapide. Cette méthode, vous l'aurez
deviné, consiste a couper en deuxl'espace de recherche. Au début, cet espace allait de 0 a 100, puis au deuxieme essaide 40 a
100, au troisiéme essai de 40 a 80, etc.

[\ Cet exemple n'est qu'a titre indicatif pour bien comprendre le concept.

En conclusion, cette méthode est vraiment simple, efficace et rapide ! Peut-étre l'aurez-vous observé, on est pas obligé de couper
l'espace de recherche en deux parties égales.

On y vient, je vais pouvoir vous expliquer comment il fonctionne. Voyez-vous le rapport avec le jeu précédent ? Pas encore ?
Alors je mlexplique.

Prenons du concret avec une valeur de tension de 3.36V que l'on met a I'entrée d'un CAN a approximations successives
(j'abrégerai par CAN dorénavant).

ni# signal

numérique

Convertisseur
Analogique -> Numeérique
algnal a approxlm_atmns
analogique successives

<’\| Notezle symbole du CAN quise trouve juste au-dessus de l'image. Il s'agit d'un "U" renversé et du caractére #.

Cette tension analogique de 3.36V va rentrer dans le CAN et va ressortir sous forme numérique (avec des 0 et 1). Mais que se
passe-t-il a I'intérieur pour arriver a un tel résultat ?

Pour que vous puissiez comprendre correctement comment fonctionne ce type de CAN, je vais étre obligé de vous apprendre
plusieurs choses avant.

Le comparateur

Commengons par le comparateur. Comme son nom le laisse deviner, c'est quelque chose qui compare. Ce quelque chose est un
composant ¢lectronique. Je ne rentrerai absolument pas dans le détail, je vais simplement vous montrer comment il fonctionne.

Comparer, oui, mais quoi ?

Des tensions ! @

Regardez son symbole, je vous explique ensuite...

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 250/326

E,

+

E,

Vous observez qu'il dispose de deuxentrées Jy et Fip et d'une sortie .
Le principe est simple :

Lorsque la tension By == Fpalors § = 4V (4 V.. ¢tant la tension d'alimentation positive du comparateur)
Lorsque la tension Fy <= Fgalors § = — V.. (— V.. étant la tension d'alimentation négative, ou la masse, du
comparateur)

e Fi = FEpestune condition quasiment impossible, sitel est le cas (sion relie F et F'p) le comparateur donnera un
résultat faux

Parlons un peu de la tension d'alimentation du comparateur. Le meilleur des cas est de l'alimenter entre 0V et +5V. Comme cela, sa
sortie sera soit égale a 0V, soit égale a +5V. Ainsi, on rentre dans le domaine des tensions acceptées par les micro-controleurs et
de plus il verra soit un état logique BAS, soit un état logique HAUT.

On peut réécrire les conditions précédemment énoncées comme ceci :

e Ey = Epalors § =1
o Fi < Fhalos § =10
o Fy = Fy alors § = inde fini

Simple n'est-ce pas ?

Le démultiplexeur

Maintenant, je vais vous parler du démultiplexeur. C'est en fait un nomun peu barbare pour désigner un composant
¢électronique qui fait de l'aiguillage de niveauxlogiques (il en existe aussi qui font de l'aiguillage de tensions analogiques).

Le principe est 1a encore trés simple. Le démultiplexeur a plusieurs sorties, une entrée et des entrées de sélection :

Demultiplexeur

e [estlentrée ou l'on impose un niveau logique O ou 1.
e les sorties § sont la ou se retrouve le niveau logique d'entrée. UNE seule sortie peut étre active a la fois et recopier le

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 251/326

niveau logique d'entrée.

e Les entrées 4 permettent de sélectionner quelle sera la sortie qui est active. La sélection se fait grice aux combinaisons
binaires. Par exemple, si je veuxsélectionner la sortie 4, je vais écrire le code 0100 (qui correspond au chiffre décimal 4) sur
les entrées A4 a A4

Démultiplexeur S,

o0 o000 =000

g1 81

1 Je rappelle que, pour les entrées de sélection, le bit de poids fort est 44 et le bit de poids faible .44. Idempour les
8 sorties, &4 est le bit de poids faible et §' g, le bit de poids fort.

La mémoire

Ce composant électronique sert simplement a stocker des données sous forme binaire.

Le convertisseur numérique analogique
Pour ce dernier composant avant l'acte final, il n'y a rien a savoir sice n'est que c'est 'opposé du CAN. Il a donc plusieurs
entrées et une seule sortie. Les entrées regoivent des valeurs binaires et la sortie donne le résultat sous forme de tension.
Fonctionnement global

Rentrons dans les explications du fonctionnement d'un CAN a approximations successives. Je vous ai fait un petit schéma
rassemblant les éléments précédemment présentés :

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 252/326

COmp —— - [:}m

CNA
#/N

p— Demultiplexeur

emoire

-

<
-+
M

Ay Az Ay A

Voila donc comment se compose le CAN. Sivous avez compris le fonctionnement de chacun des composants qui le constituent,
alors vous n'aurez pas trop de mal a suivre mes explications. Dans le cas contraire, je vous recommande de relire ce qui précede
et de bien comprendre et rechercher sur internet de plus amples informations sicela vous est nécessaire.

En premier lieu, commengons par les conditions
initiales :

e V. estlatension analogique d'entrée,
celle que l'on veut mesurer en la V.o - b=
convertissant en signal numérique. 25V

e Lamémoire contient pour l'instant que
des 0 saufpour le bit de poids fort (&) , = +
quiest a 1. Ainsi, le convertisseur
numérique -> analogique va convertir ce
nombre binaire en une tension
analogique qui aura pour valeur 2.5V.

e Pour l'instant, le démultiplexeur n'entre
pas en jeu.

CNA
#N

Démultiplexeur

Mémoire

- o000 o0 oo

A, A, A, A,

Suivons le fonctionnement étape par étape :

7.

Etape 1 :

e Japplique une tension ¥, = 3.5100V
précisément.

e Le comparateur compare la tension
Veomp = 2. 51 ala tension Vs = L
Ve = 3.5100V- Etant donné que : Demultiplexeur
Ve > Vcamp, on a un Niveau Logique v
1 en sortie du comparateur. € 9 sq00V

e Le multiplexeur entre alors en jeux. Avec
ses signauxde sélections, il va
sélectionner la sortie ayant le poids le |

A

CNA
#/N

Mémoire

[LTI

- oo oQ oD oo

plus élevé, soit Sy

e [amémoire va alors enregistrer le niveau
logique présent sur la broche 51, dans
notre cas c'est 1.

Ay A A

4 T3 TRy TRy

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 253/326

l:]aml :

e Auniveau de la mémoire, on change le
deuxi¢me bit de poids fort (mais moins
fort que le premier) correspondant a la
broche Sgen le passantal.

e FEn sortie du CNA, on aura alors une
tension de 3 TH}

e Le comparateur compare, il voit V, —t
Veomp = Ve doncildonne un état i
logique 0.

e [a mémoire enregistre alors le niveau sur
la broche Sy quiesta0.

|

173V CMNA

#/N

Démultiplexeur

Mémoire

- w oo oo

[TITTTIIT]

T —
Y m—

&
"

Etape 3 : redondante aux précédentes

e On passe le troisieme bit le plus fort
(broche Sg)al.
e Le CNA converti le nombre binaire
résultant en une tension de 3, 125} o
. 345V
e Le comparateur voit ¥, = mep, sa Démultiplexeur
sortie passe a 1.
e La mémoire enregistre l'état logique dela ¥,
broche Sgquiestal.

CNA
#iN

Mémoire

3. 5100

- o= o0 oo

[T

Ak!'“':l 2

. . . A A

Le CAN continue de cette maniére pour arriver

au dernier bit (celui de poids faible). En mémoire,

a la fin de la conversion, se trouve le résultat. On va alors lire cette valeur binaire que I'on convertira ensuite pour l'exploiter.

Bon, j'ai continué les calculs a la main (n'ayant pas de simulateur pour le faire & ma place), voici le tableau des valeurs :

Tension en sortie du

NLen sortie Bits stockés en

Poids du bit du comparateur mémoire convertisseur CNA
(enV)

10 1 1 2.5

9 0 0 3.75

8 1 1 3.125

7 1 1 3.4375

6 0 0 3.59375

5 0 0 3.515625

4 1 1 3.4765625

3 1 1 3.49609375

2 1 1 3.505859375

1 0 0 3.5107421875

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 254/326

Résultat : Le résultat de la conversion donne :

Résultat de conversion Résultat de conversion Résultat de conversion

(binaire) (décimale) (Volts)

1011001110 718 3,505859375

Observez la précision du convertisseur. Vous voyez que la conversion donne un résultat (trés) proche de la tension réelle, mais
elle n'est pas exactement égale. Ceciest di au pas du convertisseur.

Pas de calcul du CAN

Qu'est-ce que le pas de calcul ? Eh bien il s'agit de la tension minimale que le convertisseur puisse "voir". Si je mets le bit de
poids le plus faible a 1, quelle sera la valeur de la tension Vegmp ?

Le convertisseur a une tension de référence de 5V. Son nombre de bit est de 10. Donc il peut "lire" : 215 valeurs pour une seule

tension. Ainsi, sa précision sera de :2% = (), 00488281 25V

La formule a retenir sera donc :

ﬁef
QN

Avec :

® Viey :tension de référence du convertisseur
e M :nombre de bit du convertisseur

11 faut donc retenir que, pour ce convertisseur, sa précision est de 4 88352}~ Donc, sion lui met une tension de 2413} par
exemple sur son entrée, le convertisseur sera incapable de la voir et donnera un résultat égal a OV.

Les inconvénients

Pour terminer avant de passer a l'utilisation du CNA avec Arduino, je vais vous parler de ses inconvénients. Il en existe deux
principaux :

e laplage de tension d'entrée : le convertisseur analogique de 'Arduino ne peut recevoir a son entrée que des tensions
comprises entre OV et +5V. On verra plus loin comment améliorer la précision du CAN.

e laprécision : la précision du convertisseur est trés bonne sauf pour les deuxderniers bits de poids faible. On dit alors
que la précision est de 42 . 5 B (a cause du pas de calcul que je viens de vous expliquer).

Un truc trés sympa avec Arduino, c'est que c'est facile a prendre en main. Et ¢a se voit une fois de plus avec l'utilisation des
convertisseurs numérique -> analogique ! En effet, vous n'avez qu'une seule nouvelle fonction a retenir : analogRead () !

analogRead (pin)

Cette fonction va nous permettre de lire la valeur lue sur une entrée analogique de 'Arduino. Elle prend un argument et retourne
la valeur lue :

e [L'argument est le numéro de l'entrée analogique a lire (explication ci-dessous)
e Lavaleurretournée (un int)sera le résultat de la conversion analogique->numérique

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 255/326

Sur une carte Arduino Uno, on retrouve 6 CAN. IIs se trouvent tous du méme coté de la carte, la ou est écrit "Analog IN" :

MADE
IN ITALY

w |
F
=
-

AR v ArDUT

5=
i —

Ces 6 entrées analogiques sont numérotées, tout comme les entrées/sorties logiques. Par exemple, pour aller lire la valeur en
sortie d'un capteur branché sur le convertisseur de la broche analogique numéro 3, on fera: valeur = analogRead(3) ;.

Ne confondez pas les entrées analogiques et les entrées numériques ! Elles ont en effet le méme numéro pour certaines,
mais selon comment on les utilise, la carte Arduino saura sila broche est analogique ou non.

Mais comme nous sommes des programmeurs intelligents et organisés, on nommera les variables proprement pour bien travailler
de la maniére suivante :

Code : C
const int monCapteur = 3; //broche analogique 3 OU broche numérique
3
int valeurLue = 0; //la valeur lue sera comprise entre 0 et 1023

//fonction setup ()

void loop ()
{

valeurLue = analogRead (monCapteur); //on mesure la tension du
capteur sur la broche analogique 3

//du code et encore du code

Bon c'est bien, on a une valeur retournée par la fonction comprise entre 0 et 1023, mais ¢a ne nous donne pas vraiment une
tension ¢a !

Il va étre temps de faire un peu de code (et de math) pour convertir cette valeur... Et si vous réfléchissiez un tout petit peu pour
trouver la solution sans moi ?

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques

256/326

Trouvée ?

Conversion

Comme je suis super sympa je vais vous donner la réponse, avec en prime : une explication !

Récapitulons. Nous avons une valeur entre 0 et 1023. Cette valeur est I'image de la tension mesurée, elle-méme comprise entre 0V

et +5V. Nous avons ensuite déterminé que le pas du convertisseur était de 4.88mV par unité.

Donc, deuxméthodes sont disponibles :

e avec un simple produit en croix
e ecn utilisant le pas calculé plus tot

Exemple : [a mesure nous retourne une valeur de 458.

458 x o
——— = 2235V
1024

e En utilisant le pas calculé plus haut on obtient : 458 » 4.88 = 2235}

e Avec un produit en croixon obtient :

Les deuxméthodes sont valides, et donnent les mémes résultats. La premiére a 'avantage de faire ressortir l'aspect

"physique" des choses en utilisant les tensions et la résolution du convertisseur.

Voiciune fagon de le traduire en code :
Code : C

int valeurLue; //variable stockant la valeur lue sur le CAN
float tension; //résultat stockant la conversion de valeurLue en
Volts

void loop ()
{

valeurLue = analogRead (uneBrocheAvecUnCapteur) ;

tension = valeurLue * 4.88; //produit en croix, ATTENTION, donne
un résultat en mV !

tension = valeurLue * (5 / 1024); //formule a aspect "physique",
donne un résultat en mV !

}

@ Mais il n'existe pas une méthode plus "automatique" que faire ce produit en croix ?

Eh bien SI'! En effet, I'¢quipe Arduino a prévu que vous aimeriez faire des conversions facilement et donc une fonction est

présente dans l'environnement Arduino afin de vous faciliter la tache !

Cette fonction se nomme map (). A partir d'une valeur d'entrée, d'un intervalle d'entrée et d'un intervalle de sortie, la fonction

vous retourne la valeur équivalente comprise entre le deuxiéme intervalle.

Voici son prototype de manicre plus explicite :
Code : C

sortie = map(valeur d entree,
valeur extreme basse d entree,
valeur extreme haute d entree,
valeur extreme basse de sortie,

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 257/326

valeur extreme haute de sortie

)
//cette fonction retourne la valeur calculée équivalente entre les
deux intervalles de sortie

Prenons notre exemple précédent. La valeur lue se nomme "valeurLue". L'intervalle d'entrée est la gamme de la conversion allant
de 0 a 1023. La gamme (ou intervalle) de "sortie" sera la tension réelle a 'entrée du micro-contréleur, donc entre 0 et 5V. En
utilisant cette fonction nous écrirons donc :

Code : C

tension = map(valeurLue, 0, 1023, 0, 5000); //conversion de la
valeur lue en tension en mV

@ Pourquoi tu utilises 5000mV au lieu de mettre simplement 5V ?

Pour la simple et bonne raison que la fonction map utilise des entiers. Sij'utilisais 5V au lieu de 5000mV jaurais donc seulement 6
valeurs possibles pour ma tension (0, 1, 2, 3,4 et 5V).

Pour terminer le calcul, il sera donc judicieux de rajouter une dernicre ligne :

Code : C

tension = map(valeurLue, 0, 1023, 0, 5000); //conversion de la
valeur lue en tension en mV
tension = tension / 1000; //conversion des mV en V

Au retour de la liaison série (seulement sion envoie les valeurs par la liaison série) on aurait donc (valeurs a titre d'exemple) :

Code : Console

valeurLue = 458

tension = 2.290V

On est moins précis que la tension calculée plus haut, mais on peut jouer en précision en modifiant les valeurs de sortie
= de la fonction map(). Ou bien garder le calcul théorique et le placer dans une "fonction maison".

@ Est-il possible d'améliorer la précision du convertisseur ?
Voila une question intéressante a laquelle je répondrai qu'il existe deuxsolutions plus ou moins faciles a mettre en ceuvre.

Attention cependant, la tension maximale de référence ne peut étre supérieure a +5V et la minimale inférieure a OV. En
revanche, toutes les tensions comprises entre ces deux valeurs sont acceptables.

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 258/326

Clest la solution la plus simple ! Voyons deuxchoses...

Tension de référence interne

Le micro-contréleur de 'Arduino posséde plusicurs tensions de référence utilisables selon la plage de variation de la tension que
l'on veut mesurer.

Prenons une tension, en sortie d'un capteur, qui variera entre 0V et 2.5V. Pour améliorer la précision de lecteur, car la tension
maximale d'entrée est divisée par deux, on va utiliser la fonction : analogReference ().

Pour ce faire, il suffit d'appeler cette fonction comme ceci :

Code : C

void setup ()

{

analogReference (INTERNAL) ; //permet de choisir une tension de
référence de 2.56V

}

La tension de référence interne est de 2.56V lorsque 'on appelle la fonction comme précédemment et de 5V par défaut.

Tension de référence externe

On va utiliser la méme fonction, mais comme ceci :

Code : C

void setup ()

{

analogReference (EXTERNAL); //permet de choisir une tension de
référence externe a la carte

}

Seulement, il faut mettre la tension de référence sur la broche AREF de I'Arduino, toujours comprise entre 0 et 5V !!

Astuce : la carte Arduino produit une tension de 3.3V (a c6té de la tension 5V). Vous pouvez donc utiliser cette tension

directement pour la tension de référence du convertisseur.

@ Mais, sije veuxque ma tension d'entrée varie au-dela de +5V, comment je fais ? Y a-t-il un moyen d'y parvenir ?

Oui, il y en a un, mais il requiert quelques connaissances en électronique. Je ne parlerai donc que de son fonctionnement
théorique.

Cette deuxiéme solution est assez simple & comprendre, mais un peu moins a mettre en ceuvre. En tous cas, avec vos
connaissances actuelles vous ne pouvez pas utiliser cette solution. A moins, bien siir, d'avoir quelques connaissances bien

www.siteduzero.com

http://arduino.cc/en/Reference/AnalogReference
http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 259/326

fondées en électronique. Clest pour cela que j'énoncerai seulement le principe, ceux qui voudront utiliser cette solution se
débrouilleront avec leurs connaissances.

Principe
Pour arriver a améliorer la précision de conversion du CAN, on va utiliser une "astuce".

Prenons un capteur qui délivre une tension analogique comprise entre OV et +10V. A cette tension, on va en soustraire une que
l'on aura créée, pour "la faire rentrer" dans la plage d'entrée du CAN d'Arduino. Cette tension créée ne l'est pas par hasard et a
une valeur déterminée. Comment ? Eh bien, par exemple, je vais soustraire 0.5V a la tension d'entrée du capteur a chaque fois que
la tension résultante de cette soustraction est supérieure a 0.5V.

puisque, du coup, on perd énormément en précision ! Et méme sion descend la tension de référence du CAN a 0.5V, on

.. Bon, d'accord, mais ¢a veut dire que la tension lue sera toujours comprise entre OV et 0.5V, alors quel est I'intérét
. aura la méme précision qu'au départ ! Je comprends pas !! ®

Clest la qu'est toute l'astuce, aprés avoir soustrait la tension, on va l'amplifier ! Et cette amplification sera d'un facteur 10. Comme
cela, on retrouve bien nos 5V a l'entrée du CAN de I'Arduino. Et de cette manicre, on aura gagné en précision et d'un facteur 10
de surcroit !

Je pense que je vais vous faire un petit schéma avec un bon exemple et quelques calculs théoriques pour que vous puissiez
mieux assimiler mes explications.

Un schéma, un exemple...

Pour cette solution je vais aller un peu vite car il s'agit d'une technique avancée qui demande un certain niveau en électronique et
que vous n'avez pas en ayant pour seules connaissances en le domaine que la lecture de ce cours. Elle est donc destinée aux
plus téméraires d'entre vous.

Adaptation
en tension Filtre
PWM — passe-bas
AOP en mode
comparateur -
Soustracteur b— Amplificateur — Vs
Vcapt&ur —

e [e fonctionnement est trés simple, on créer une PWM qui passe dans un filtre passe-bas afin de créer un palier de
tension.

e (Cette tension alors créée va €tre soustraite a la tension en sortie du capteur que I'on récupére.

e Enfin, on amplifie la tension résultante.

Prenons 1'exemple suivant :

e Le capteur fournit une tension de 0.856V, l'amplification du montage est de 10 fois. Chaque palier de tension créé a partir
de la PWM correspond a un niveau de tension approximativement égala 0.5V

* Ensortie du soustracteur on a donc Veapteur — Vpatier s0it (),.856 — (0.5 = 0.3561

e Enfin, en sortie de l'amplificateur on a donc une tension de {}), 356 » 10 = 3.561

Cette derniere valeur est bien comprise entre OV et 5V, exactement comme on le souhaitait pour que l'on puisse convertir cette
valeur grace au CAN de I'Arduino. De ce fait, on a augmenté la précision d'un facteur 10, le CAN de I'Arduino sera donc capable
de "voir" des tensions 10 fois plus faibles sur un seul bit, soit : (J,J0048 8} = 488}_{1{'

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 260/326

@ Qu'est-ce que c'est que cette béte-la encore ?

Le potentiométre (ou "potar" pour les (trés) intimes) est un composant trés fréquemment employ¢ en électronique. On le
retrouve aussisous le nomde résistance variable. Comme ce dernier nom l'indique si bien, un potentiometre nous permet entre
autres de réaliser une résistance variable. En effet, on retrouve deuxapplications principales que je vais vous présenter juste
apreés. Avant toute chose, voici le symbole du potentiometre :

Cas n°l : le pont diviseur de tension

On y remarque une premiére chose importante, le potentiométre a trois broches. Deuxservent a borner les tensions maximum (A)
et minimum (B) que l'on peut obtenir a ses bornes, et la troisiéme (C) est reliée a un curseur mobile qui donne la tension variable
obtenue entre les bornes précédemment fixées. Ainsi, on peut représenter notre premier cas d'utilisation comme un "diviseur de
tension réglable". En effet, lorsque vous déplacez le curseur, en interne cela équivaut a modifier le point milieu.

En termes électroniques, vous pouvez imaginer avoir deuxrésistances en série (R1 et R2 pour étre original). Lorsque vous
déplacez votre curseur vers la borne basse, R1 augmente alors que R2 diminue et lorsque vous déplacez votre curseur vers la

borne haute, R2 augmente alors que R1 diminue.

Voici un tableau montrant quelques cas de figure de maniére schématique :

Schéma équivalent Position du curseur Tension sur la broche C
+5V o 50
Cureuratamoitie | Viggar = (1= =5) x5 =25V
Vsigﬂ.rzi!
+5V ov
—.—T—{-ﬁ‘l R2 l_. Curseur a 25% du 2D
départ ’ Va‘igﬂa-i = {1 -]__m} x 5= 3.7V
VSEQ‘HEE
+5V ov
—p| Rl | R2 . Curseur a 75% du 75
l T e départ Viigna = (1 — _IDD} x 5 = 1.25V
FSEQ’WEE

Sivous souhaitezavoir plus d'informations sur les résistances et leurs associations ainsique sur les potentiometres, je
vous conseille d'aller jeter un ceil sur ce chapitre. @

Cas n°2 : la résistance variable
Le deuxi¢me cas d'utilisation du potentiométre est la résistance variable. Cette configuration est trés simple, il suffit d'utiliser le

potentiométre comme une simple résistance dont les bornes sont A et C ou B et C. On pourra alors faire varier la valeur ohmique
de la résistance grace a I'axe du potentiométre.

Attention, il existe des potentiométres linéaires (la valeur de la tension évolue de maniére proportionnelle au

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-543664-resistance-et-resistor.html
http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques

261/326

o i

déplacement du curseur), mais aussides potentiomeétres logarithmique/anti-logarithmique (la valeur de la tension

évolue de maniére logarithmique ou anti-logarithmique par rapport a la position du curseur). Choisissez-en dont un qui
est linéaire si vous souhaitez avoir une proportionnalité.

Vous allez voir que l'utilisation avec Arduino n'est pas vraiment compliquée. Il va nous suffire de raccorder les alimentations sur

les bornes extrémes du potentiométre, puis de relier la broche du milieu sur une entrée analogique de la carte Arduino :

R1
100kE2

Arduinol

AREF

AD
Al
A2
A3
Ad

AS

Vi v

Arduino

nduy Bojeuy

Power

GMND

Vin

Digital Input/Output

2 14 z
EETET

D7

D5

o3

(¥

D1

P

P

2
ELTE]

Pt

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 262/326

d
LI

ouTnNpJY

OUEMPJR « RAR

n
z
-

L

Une fois le raccordement fait, nous allons faire un petit programme pour tester cela. Ce programme va simplement effectuer une
mesure de la tension obtenue sur le potentiométre, puis envoyer la valeur lue sur la liaison série (¢a nous fera réviser @).

Dans l'ordre, voiciles choses a faire :

e - Déclarer la broche analogique utilisée (pour faire du code propre)

e - Mesurer la valeur
e - L'afficher!

Je vous laisse chercher ? Aller, au boulot ! @

Voici la correction, c'est le programme que j'ai fait, peut-&tre que le votre sera mieux :

Code : C

const int potar = 0; // le potentiométre, branché sur la broche

analogique 0
int valeurLue; //variable pour stocker la valeur lue apreés

conversion
float tension; //on convertit cette valeur en une tension

void setup ()

{

//on se contente de démarrer la liaison série
Serial.begin (9600) ;
}

void loop ()
{

//on convertit en nombre binaire la tension lue en sortie du
potentioméetre
valeurLue = analogRead (potar);

//on traduit la valeur brute en tension (produit en croix)
tension = valeurLue * 5.0 / 1024;

//on affiche la valeur lue sur la liaison série
Serial.print ("valeurLue = ");
Serial.println (valeurLue) ;

//on affiche la tension calculée
Serial.print ("Tension = ");

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 263/326

Serial.print (tension,?2);
Serial.println(" V") ;

Serial.println(); //on saute une ligne entre deux affichages
delay (500); //on attend une demi-seconde pour que 1'affichage ne
soit pas trop rapide

}
Vous venez de créer votre premier Voltmetre ! @
Au programme :

e Le prochain chapitre est un TP faisant usage de ces voies analogiques
e Le chapitre quile suit est un chapitre qui vous permettra de créer des tensions analogiques avec votre carte Arduino,
idéal pour mettre en ceuvre la deuxieme solution d'amélioration de la précision de lecteur du convertisseur !

En somme, ce chapitre vous a permis de vous familiariser un peu avec les tensions analogiques, ce qui vous permettra par la
suite de gérer plus facilement les grandeurs renvoyées par des capteurs quelconques.

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 264/326

[TP] Vu-metre a LED

On commence cette partie sur l'analogique sur les chapeauxde roues en réalisant tout de suite notre premier TP. Ce dernier n'est
pas trés compliqué, a condition que vous ayez suivi correctement le tuto et que vous n'ayez pas oublié les bases des parties
précédentes !

Vu-metre, ¢a vous parle ?

Dans ce TP, nous allons réaliser un va-métre. Méme sile nomne vous dit rien, je suis sur que vous en avez déja rencontré. Par
exemple, sur une chaine hi-fi ou sur une table de mixage on voit souvent des loupiotes s'allumer en fonction du volume de la note
joué. Et bien c'est ¢a un vu-métre, c'est un systéme d'affichage sur plusieurs LED, disposées en ligne, qui permettent d'avoir un
retour visuel sur une information analogique (dans I'exemple, ce sera le volume).

Objectif

Pour l'exercice, nous allons réaliser la visualisation d'une tension. Cette derniére sera donnée par un potentiométre et sera
affichée sur 10 LED. Lorsque le potentiométre sera a 0V, on allumera 0 LED, puis lorsqu'il sera au maximum on les allumera toutes.
Pour les valeurs comprises entre 0 et 5V, elles devront allumer les LED proportionnellement.

Voila, ce n'est pas plus compliqué que ¢ca. Comme d'habitude voici une petite vidéo vous montrant le résultat attendu et bien

entendu ...
BON COURAGE !

J’espére que tout c'est bien passé pour vous et que l'affichage cartonne ! Wici maintenant venu l'heure de la correction, en
espérant que vous n'en aurez pas besoin et que vous la consulterez juste pour votre culture. @ Comme d'habitude nous allons

commencer par voir le schéma puis ensuite nous étudierons le code.

Le schéma n'est pas trés difficile. Nous allons retrouver 10 LEDs et leurs résistances de limitations de courant branchées sur 10
broches de I'Arduino (histoire d'étre original nous utiliserons 2 a 11). Ensuite, nous brancherons un potentiométre entre le +5V et
la masse. Sa broche centrale, qui donne la tension variable sera connectée a l'entrée analogique 0 de 'Arduino.
Voici le schéma obtenu :

Secret (cliquez pour afficher)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques

265/326

R5T

AREF

Al

A2

Ad

I3 &V

Power
Arduino

i

=5

a

[=]

(U=}

53

=

=4
GMD

Vin

Digital Input/Output

D13
D12
D11
D1d
D9
D&
o7
D&
D5
D4
03
L2
D1

Do

Arduinol

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 266/326

o' o PR e e —
..ﬁiiii e —
ttvl—l'“f-ttln—
fﬁtttt L o
x ii—"“r\-ili_
ﬁtitt .= e
ﬂfﬁihﬂﬁditl—
H LRI S L s
T ../ithﬂ'ﬂr\-ilt_
= H LU R L .
a ..#ti-mrﬂiil_
= '.ﬁ LR LI e
L 2 tt—ll'ﬂr-tltn—
3 # R .. Jressu.
c ——l-tqnllnlr‘r“'uith—
i LI L L B) - Ve
= tivl-ll'ﬂr\-iilti—
LU] L craman
.._._tt-ﬂ'“r!-ttl_
a3 LU B iiI I

2 LA L B LI LI
I RO s B gy

i L] LRI]

LRI]

T LRI

LA} L L A

_/1-1-1-1- LRI

- LU B LRCI I]

D DR

CECECICI] CECECIC

La encore vous commencez a avoir 'habitude, nous allons d'abord étudier le code des variables globales (pourquoi elles existent
?), voir la fonction setup(), puis enfin étudier la boucle principale et les fonctions annexes utilisées.

Variables globales et setup

Dans ce TP nous utilisons 10 LEDs, ce qui représente autant de sorties sur la carte Arduino donc autant de "constint.." a
écrire. Afin de ne pas se fatiguer de trop, nous allons déclarer un tableau de "const int" plutdt que de copier/coller 10 fois la
méme ligne. Ensuite, nous allons déclarer la broche analogique sur laquelle sera branché le potentiométre. Enfin, nous déclarons
une variable pour stocker la tension mesurée sur le potentiométre. Et c'est tout pour les déclarations !

Code : C

// Déclaration et remplissage du tableau...

// ...représentant les broches des LEDs
const int leds[10] = {2,3,4,5,6,7,8,9,10,11};
const int potar = 0; //le potentiometre sera branché sur la broche

analogique 0
int tension; //variable stockant la tension mesurée

Une fois que l'on a fait ces déclarations, il ne nous reste plus qu'a déclarer les broches en sortie et a les mettre a I'état HAUT pour
éteindre les LEDs. Pour faire cela de maniére simple (au lieu de 10 copier/coller), nous allons utiliser une boucle for pour effectuer
l'opérations 10 fois (afin d'utiliser la puissance du tableau).

Code : C

void setup ()

{

int i =

for (1=0;
{
pinMode (leds[i], OUTPUT); //déclaration de la broche en sortie
digitalWrite(leds([i], HIGH); //mise a 1'état haut

}

}

0;
i<10; i++)

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 267/326

Boucle principale

Alors la vous allez peut-étre étre surpris mais nous allons avoir une fonction principale super light. En effet, elle ne va effectuer
que deuxopérations : Mesurer la tension du potentiométre, puis appeler une fonction d'affichage pour faire le rendu visuel de
cette tension.
Voicices deuxlignes de code :

Code : C

void loop ()
{

tension = analogRead (potar); //on récupere la valeur de la
tension du potentiometre

afficher (tension); //et on affiche sur les LEDs cette tension

}

Encore plus fort, la méme écriture mais en une seule ligne !
Code : C

void loop ()
{

afficher (analogRead (potar)); //la méme chose qu'avant méme en
une seule ligne !

}

Fonction d'affichage

Alors certes la fonction principale est trés légére, mais ce n'est pas une raison pour ne pas avoir un peu de code autre part. En
effet, le gros du traitement va se faire dans la fonction d'affichage, qui, comme son nomet ses arguments l'indiquent, va servir a
afficher sur les LEDs la tension mesurée.
Le but de cette demiére sera d'allumer les LEDs de maniére proportionnelle a la tension mesuré. Par exemple, si la tension mesuré
vaut 2,5V (sur 5V max) on allumera 5 LEDs (sur 10). Si la tension vaut 5V, on les allumera toutes. Je vais maintenant vous montrer
une astuce toute simple qui va tirer pleinement parti du tableau de broches créé tout au début.
Tout d'abord, mettons-nous d'accord. Lorsque l'on fait une mesure analogique, la valeur retournée est comprise entre 0 et 1023.
Ce que je vous propose, c'est donc d'allumer une LED par tranche de 100 unités. Par exemple, si la valeur est comprise entre 0 et
100, une seule LED est allumée. Ensuite, entre 100 et 200, on allume une LED supplémentaire, etc. Pour une valeur entre 700 et 800
on allumera donc... 8§ LEDs, bravo a ceux qui suivent ! :s
Ce comportement va donc s'écrire simplement avec une boucle for, qui va incrémenter une variable i de 0 a 10. Dans cette boucle,
nous allons tester sila valeur (image de la tension) est inférieure & i multiplier par 100 (ce qui représentera nos différents pas). Si
le test vaut VRALI, on allume la LED i, sinon on I'éteint.
Démonstration :

Code : C

void afficher (int valeur)
{
int 1i;
for (i=0; i<10; i++)
{
if(valeur < (1i*100))
digitalWrite(leds[i], LOW); //on allume la LED
else
digitalWrite(leds[1], HIGH); //ou on éteint la LED
}
}

Si jamais vous avez trouvé l'exercice trop facile, pourquoine pas faire un peu de zeéle en réalisant carrément un mini-voltmetre en
affichant sur deux afficheurs 7 segments une tension mesurée (un afficheur pour les Wolts et un autre pour la premiére décimale) ?
Cecin'est qu'une idée d'amélioration, la solution sera donnée, commentée, mais pas expliquée en détail car vous devriez
maintenant avoir tout le savoir pour la comprendre. L'exercice est juste la pour vous entrainer et pour vous inspirer avec un
nouveau montage.

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 268/326

Secret (cliquez pour afficher)

Code : C

//les broches du décodeur 7 segments

const int bit A = 2;

const int bit B 38

const int bit C 4;

const int bit D = 5;

//les broches des transistors pour 1'afficheur des dizaines et
celui des unités

const int alim dizaine =
const int alim unite = 7;
//la broche du potar
const int potar = 0;

6;

float tension = 0.0; //tension mise en forme
int val = 0; //tension brute lue (0 a 1023)
bool afficheur = false;

long temps;

void setup ()

{

//Les broches sont toutes des sorties (sauf les boutons)
pinMode (bit A, OUTPUT);

pinMode (bit B, OUTPUT);
pinMode (bit C, OUTPUT) ;
pinMode (bit D, OUTPUT) ;
pinMode (alim dizaine, OUTPUT) ;
pinMode (alim unite, OUTPUT) ;

//Les broches sont toutes mise a 1'état bas (sauf led rouge
éteinte)
digitalWrite(bit A, LOW);
digitalWrite(bit B, LOW);
digitalWrite(bit C, LOW);
digitalWrite(bit D, LOW);
digitalWrite(alim dizaine, LOW);
(

digitalWrite (alim unite, LOW) ;

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 4 :

[Pratique] Les grandeurs analogiques

269/326

temps = millis(); //enregistre "1'heure"

}

void loop ()

{

//on fait la lecture analogique
val = analogRead (potar);

//mise en forme de la valeur lue

tension = val * 5; //simple relation de trois pour la conversion
(*5/1023)

tension = tension / 1023;

//a ce stade on a une valeur de type 3.452 Volts... que 1'on va
multiplier par 10 pour 1'affichage avec les vieilles fonctions
tension = tension*10;

//si ca fait plus de 10 ms qu'on affiche, on change de 7
segments

if((millis() - temps) > 10)

{

//on inverse la valeur de "afficheur" pour changer d'afficheur
(unité ou dizaine)

afficheur = !'afficheur;

//on affiche

afficher nombre (tension, afficheur);

temps = millis(); //on met a jour le temps

}
}

//fonction permettant d'afficher un nombre
void afficher nombre(float nombre, bool afficheur)

{
long temps;

char unite = 0, dizaine = 0O;

if (nombre > 9)

dizaine = nombre / 10; //on recupere les dizaines
unite = nombre - (dizaine*10); //on recupere les unités

if (afficheur)

{
//on affiche les dizaines
digitalWrite(alim unite, LOW);
digitalWrite(alim dizaine, HIGH);
afficher (dizaine) ;

}

else

{
//on affiche les unités
digitalWrite(alim dizaine, LOW);
digitalWrite(alim unite, HIGH);
afficher (unite);

}

}

//fonction écriveant sur un seul afficheur
void afficher (char chiffre)
{
//on commence par écrire 0, donc tout a 1'état bas
digitalWrite(bit A, LOW);
digitalWrite(bit B, LOW);
digitalWrite(bit C, LOW);
digitalWrite(bit D, LOW)

’

if (chiffre >= 8)
{digitalWrite(bit_D, HIGH) ;
chiffre = chiffre - 8;
if(chiffre >= 4)
{digitalWrite(bit C, HIGH);

www.siteduzero.com

http://www.siteduzero.com

Partie 4 :

[Pratique] Les grandeurs analogiques

270/326

chiffre = chiffre - 4;
}
if (chiffre >= 2)
{
digitalWrite (bit_B, HIGH) ;
chiffre = chiffre - 2;
}
if (chiffre >= 1)
{
digitalWrite (bit_A, HIGH) ;
chiffre = chiffre - 1;
}
//Et voila !!
}

Vous savez maintenant comment utiliser et afficher des valeurs analogiques externes a la carte Arduino. En approfondissant vos
recherches et vos expérimentations, vous pourrez certainement faire pas mal de choses telles qu'un robot en associant des

capteurs et des actionneurs a la carte, des appareils de mesures (Wltmétre, Ampéremétre, Oscilloscope, etc.).

Je compte sur vous pour créer par vous-méme ! @

Direction, le prochain chapitre ou vous découvrirez comment faire une conversion numérique -> analogique...

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 271/326

Et les sorties "analogiques", enfin... presque !

Vous vous souvenez du premier chapitre de cette partie ? Oui, lorsque je vous parlais de convertir une grandeur analogique
(tension) en une donnée numérique. Eh bien 13, il va s'agir de faire I'opération inverse. Comment ? C'est ce que nous allons voir.
Je peuxvous dire que ¢a a un rapport avec la PWM...

Je vais vous présenter deux méthodes possibles qui vont vous permettre de convertir des données numériques en grandeur
analogique (je ne parlerai 1a encore de tension). Mais avant, placons-nous dans le contexte.

Convertir du binaire en analogique, pour quoi faire ? C'est vrai, avec la conversion analogique->numérique il y avait
une réelle utilité, mais la, qu'en est-il ?

L'utilité est tout aussipesante que pour la conversion A->N. Cependant, les applications sont différentes, a chaque outil un
besoin dirais-je. En effet, la conversion A->N permettait de transformer une grandeur analogique non-utilisable directement par
un systéme a base numérique en une donnée utilisable pour une application numérique. Ainsi, on a pu envoyer la valeur lue sur
la liaison série. Quant a la conversion opposée, conversion N->A, les applications sont différentes, je vais en citer une plus ou
moins intéressante : par exemple commander une, ou plusieurs, LED tricolore (Rouge-Vert-Bleu) pour créer un luminaire dont la
couleur est commandée par le son (nécessite une entré analogique @).

Tiens, en voila un projet intéressant ! Je vais me le garder sous la main... @

@ Alors ! alors ! alors !! Comment on fait !? @

Serait-ce un léger soupgon de curiosité que je pergois dans vos yeux frétillants ? @

Comment fait-on ? Suivez -le guide !

La premi¢re méthode consiste en l'utilisation d'un convertisseur Numérique->Analogique (que je vais abréger CNA). Il en existe,
tout comme le CAN, de plusieurs sortes :

e CNAarésistances pondérées : ce convertisseur utilise un grand nombre de résistances qui ont chacune le double de la
valeur de la résistance quila précéde. On a donc des résistances de valeur R, 2R, 4R, 8R, 16R, ..., 256R, 512R, 1024R, etc.
Chacune des résistances sera connectée grace au micro-controleur a la masse ou bien au +5V. Ces niveaux logiques
correspondent aux bits de données de la valeur numérique a convertir. Plus le bit est de poids fort, plus la résistance a
laquelle il est adjoint est grande (maximumR). A I'inverse, plus il est de poids faible, plus il verra sa résistance de sortie de
plus petite valeur. Aprés, grice a un petit montage ¢lectronique, on arrive a créer une tension proportionnelle au nombre
debital.

e CNAde type R/2R : 13, chaque sortie du micro-contrdleur est reliée a une résistance de méme valeur (2R), elle-méme
connectée au +5V par l'intermédiaire d'une résistance de valeur R. Toujours avec un petit montage, on arrive a créer une
tension analogique proportionnelle au nombre de bit a 1.

Cependant, je n'expliquerai pas le fonctionnement ni l'utilisation de ces convertisseurs car ils doivent étre connectés a autant de
broches du micro-contréleur qu'ils ne doivent avoir de précision. Pour une conversion sur 10 bits, le convertisseur doit utiliser 10
sorties du microcontroleur !

Bon, s'iln'y a pas moyen d'utiliser un CNA, alors on va fe-eréer utiliser ce que peut nous fournir la carte Arduino : la PWM.

Vous vous souvenez que j'ai évoqué ce terme dans le chapitre sur la conversion A->N ? Mais concrétement, c'est quoi ?

Avant de poursuivre, je vous conseille d'aller relire cette premiere partie du chapitre sur les entrées analogiques pour
revoir les rappels que j'ai faits sur les signauxanalogiques.

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-620285-1-les-entrees-analogiques-de-l-arduino.html#ss_part_1
http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 272/326

Définition

N'ayez point peur, je vais vous expliquer ce que c'est au lieu de vous donner une définition tordue comme on peut en trouver
parfois dans les dictionnaires.

D'abord, la PWM sa veut dire : Pulse Width Modulation et en frangais cela donne Modulation a Largeur d'Impulsion (MLI).

La PWM est en fait un signal numérique qui, a une fréquence donnée, a un rapport cyclique qui change.

Y'a plein de mots que je comprends pas, c'est normal ?

Oui, car pour l'instant je n'en ai nullement parlé. Wila donc notre prochain objectif.

La fréquence et le rapport cyclique

La fréequence d'un signal périodique correspond au nombre de fois que la période se répéte en UNE seconde. On la mesure en
Hertz, noté Hz. Prenons l'exemple d'un signal logique qui émet un 1, puis un 0, puis un 1, puis un 0, etc. autrement dit un signal
créneaux, on va mesurer sa période (en temps) entre le début du niveau 1 et la fin du niveau 0 :

Période

1lol1]of1]o]1 u|1|
oV >t

Ensuite, lorsque l'on aura mesuré cette période, on va pouvoir calculer sa fréquence (le nombre de périodes en une seconde)
grace a la formule suivante :

F —

L
T

Avec :

e [:fréquence du signal en Hertz (Hz)
e T :temps de la période en seconde (s)

Le rapport cyclique, un mot bien particulier pour désigner le fait que le niveau logique 1 peut ne pas durer le méme temps que le
niveau logique 0. C'est avec ¢a que tout repose le principe de la PWM. Clest-a-dire que la PWM est un signal de fréquence fixe
qui a un rapport cyclique qui varie avec le temps suivant "les ordres qu'elle recoit" (on reviendra dans un petit moment sur ces
mots).

Le rapport cyclique est mesuré en pour cent (%). Plus le pourcentage est élevé, plus le niveau logique 1 est présent dans la
période et moins le niveau logique 0 l'est. Et inversement. Le rapport cyclique du signal est donc le pourcentage de temps de la
période durant lequel le signal est au niveau logique 1.

En somme, cette image extraite de la documentation officiclle d'Arduino nous montre quelques exemples d'un signal avec des
rapports cycliques différents :

www.siteduzero.com

http://arduino.cc/en/Tutorial/PWM
http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 273/326

Pulse Width Modulation
0% Duty Cycle - analogWrite(0)

Ov .
25% Duty Cycle - analogWrite(64)
Sv
ﬂ\,l' -
50% Duty Cycle — analogWrite(127)
L L
Ow

75% Duty Cycle - analogWrite(191)
oV

Ow -

100% Duty Cycle - analogWrite{255)
v ‘ ‘ : '

Ow

Astuce : Rapport cyclique ce dit Duty Cycle en anglais.

Ce n'est pas tout ! Aprés avoir généré ce signal, il va nous falloir le transformer en signal analogique. Et oui ! Pour l'instant ce
signal est encore constitué d'états logiques, on va donc devoir le transformer en extrayant sa valeur moyenne... Je ne vous en
dis pas plus, on verra plus bas ce que cela signifie.

Les broches de la PWM

Sur votre carte Arduino, vous devriez disposer de 6 broches qui soient compatibles avec la génération d'une PWM. Elles sont
repérées par le symbole tilde ~ . Voici les broches générant une PWM :3,5,6,9, 10 et 11.

La fréquence de la PWM

Cette fréquence, je le disais, est fixe, elle ne varie pas au cours du temps. Pour votre carte Arduino elle est de environ 490Hz.

La fonction analogWrite()
Je pense que vous ne serez pas étonné sije vous dis que Arduino intégre une fonction toute préte pour utiliser la PWM ?
Plus haut, je vous disais ceci:

Citation : Moi

la PWM est un signal de fréquence fixe qui a un rapport cyclique qui varie avec le temps suivant "les ordres qu'elle regoit"

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 274/326

Clest sur ce point que jaimerais revenir un instant. En fait, les ordres dont je parle sont les parametres passés dans la fonction
qui génere la PWM. Ni plus ni moins.

Etudions maintenant la fonction permettant de réaliser ce signal : analogWrite (). Elle prend deuxarguments :

e [e premier est le numéro de la broche ou l'on veut générer la PWM
e Le second argument représente la valeur du rapport cyclique a appliquer. Malheureusement on n'exprime pas cette valeur
en pourcentage, mais avec un nombre entier compris entre 0 et 255

Si le premier argument va de soi, le second mérite quelques précisions. Le rapport cyclique s'exprime de 0 a 100 % en temps
normal. Cependant, dans cette fonction il s'exprimera de 0 & 255 (sur 8 bits). Ainsi, pour un rapport cyclique de 0% nous
enverrons la valeur 0, pour un rapport de 50% on enverra 127 et pour 100% ce sera 255. Les autres valeurs sont bien entendu
considérées de maniére proportionnelle entre les deux. Il vous faudra faire un petit calcul pour savoir quel est le pourcentage du
rapport cyclique plutot que l'argument passé dans la fonction.

Utilisation

Voila un petit exemple de code illustrant tout ¢a :

Code : C
const int sortieAnalogique = 6; //une sortie analogique sur la
broche 6

void setup ()

{
pinMode (sortieAnalogique, OUTPUT) ;
}

void loop ()
{
analogWrite (sortieAnalogique, 107); //on met un rapport cyclique
de 107/255 = 42 $
}

Savez-vous que vous pouvez d'ores et déja utiliser cette fonction pour allumer plus ou moins intensément une LED ? En effet,
pour un rapport cyclique faible, la LED va se voir parcourir par un courant moins longtemps que lorsque le rapport cyclique est
fort. Or, si elle est parcourue moins longtemps par le courant, elle s'éclairera également moins longtemps. En faisant varier le
rapport cyclique, vous pouvez ainsi faire varier la luminosité de la LED.

La LED RGB ou RVB
RGB pour Red-Green-Blue en anglais.

Cette LED est composée de trois LED de couleurs précédemment énoncées. Elle posséde donc 4 broches et existe sous deux
modeles : & anode commune et a cathode commune. Exactement comme les afficheurs 7 segments. Choisissez-en une a anode
commune.

Mixer les couleurs

Lorsque l'on utilise des couleurs, il est bon d'avoir quelques bases en arts plastiques. Révisons les fondements. La lumiére, peut-
étre ne le savez-vous pas, est composée de trois couleurs primaires quisont :

e Lerouge

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 275/326

o Le vert
e Lebleu

A partir de ces trois couleurs, il est possible de créer n'importe quelle autre couleur du spectre lumineux visible en mélangeant
ces trois couleurs primaires entre elles.

Par exemple, pour faire de l'orange on va mélanger du rouge (2/3 du volume final) et du vert (a 1/3 du volume final).

Je vous le disais, la fonction analogWrite() prend un argument pour la PWM qui va de 0 a 255. Tout comme la proportion de
couleur dans les logiciels de dessin ! On parle de "norme RGB" faisant référence auxtrois couleurs primaires.

Pour connaitre les valeurs RGB d'une couleur, je vous propose de regarder avec le logiciel Gimp (gratuit et multiplateforme). Pour
cela, il suffit de deuxobservations/clics :

1. Tout d'abord on sélectionne la "boite a couleurs" dans la boite a outils
2. Ensuite, en jouant sur les valeurs R, Get B on peut voir la couleur obtenue

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 276/326

| gimp toolbox =->

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 277/326

T . e Tty

Afin de faire des jolies couleurs, nous utiliserons analogWrite() trois fois (une pour chaque LED). Prenons tout de suite un
exemple avec du orange et regardons sa composition sous Gimp :

Medifu gl sas §4 p Switw $8 prESmag plags -

des/n" - F .
-
"
R

P La couleur orange avec
s 1l

Moktation HTML : | FF9000

A e A SR e v st

A partir de cette image nous pouvons voir qu'il faut :

e 100 % de rouge (255)
e 56% de vert (144)
e (0% de bleu (0)

Nous allons donc pouvoir simplement utiliser ces valeurs pour faire une jolie couleur sur notre LED RGB :

Code : C

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 278/326

const int ledRouge = 11;
const int ledVerte = 9;
const int ledBleue = 10;

void setup ()

{

//on déclare les broches en sorties
pinMode (ledRouge, OUTPUT) ;
pinMode (ledVerte, OUTPUT) ;
pinMode (ledBleue, OUTPUT) ;

//on met la valeur de chaque couleur
analogWrite (ledRouge, 255);
analogWrite (ledVerte, 144);
analogWrite (ledBleue, 0);

}

void loop ()
{

//on ne change pas la couleur donc rien a faire dans la boucle
principale

}

@ Moi j'obtiens pas du tout de l'orange ! Plutot un bleu étrange...

Clest exact. Souvenez-vous que c'est une LED a anode commune, or lorsqu'on met une tension de 5V en sortie du
microcontréleur, la LED sera éteinte.

Les LED sont donc pilotées al'état bas. Autrement dit, ce n'est pas la durée de I'état haut qui est importante mais plutot celle de
I'état bas. Afin de pallier cela, il va donc falloir mettre la valeur "inverse" de chaque couleur sur chaque broche en faisant

lopération ValeurReelle = 255 — ValeurTheorigue. Le code précédent devient donc :

Code : C
const int ledRouge = 11;
const int ledVerte = 9;
const int ledBleue = 10;

void setup ()

{

//on déclare les broches en sorties
pinMode (ledRouge, OUTPUT) ;
pinMode (ledVerte, OUTPUT) ;
pinMode (ledBleue, OUTPUT) ;

//on met la valeur de chaque couleur
analogWrite (ledRouge, 255-255);
analogWrite (ledVerte, 255-144);
analogWrite (ledBleue, 255-0);

On en a fini avec les rappels, on va pouvoir commencer un petit exercice.

L'objectif
L'objectif est assez simple, vous allez générer trois PWM différentes (une pour chaque LED de couleur) et créer 7 couleurs (le

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 279/326

noir ne compte pas ! @)) distinctes qui sont les suivantes :
rouge

vert
bleu

violet

Ces couleurs devront "défiler" une par une (dans l'ordre que vous voudrez) toutes les 500ms.

Le montage a réaliser
Vous allez peut-€tre étre surpris car je vais utiliser pour le montage une LED a anode commune, afin de bien éclairer les LED avec

la bonne proportion de couleur. Donc, lorsqu'il y aura la valeur 255 dans analogWrite(), la LED de couleur rouge, par exemple,
sera complétement illuminée.

W oW Win

Premsar

RST b1y =
AREF Diz

Arduino Dt

| |

5]
e |— P
2 - RGB schema
g o —
E I_'It. WM
g
— A X os L.
— A D& —
z
= A & OF —
o
= A1 T OF |fe—
=
L e
— A4 m m—

GND

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 280/326

M4
= #:

——a

e e Y

L & & @ @@ & & L O L O

C L O & L O L O
L -

st

RGB montage

- TH - x
= Ardulno

C'est parti ! ()

Correction
Voila le petit programme que j'ai fait pour répondre a l'objectif demandé :

Code : C++

//définition des broches utilisée (vous étes libre de les changer)
const int led verte = 9;
const int led bleue = 10;
const int led rouge 11;

int compteur defilement = 0; //variable permettant de changer de
couleur

void setup ()

{
//définition des broches en sortie
pinMode (led rouge, OUTPUT) ;
pinMode (led verte, OUTPUT) ;
pinMode (led bleue, OUTPUT) ;

}

void loop ()

{
couleur (compteur defilement); //appel de la fonction d'affichage
compteur defilement++; //incrémentation de la couleur a afficher
if (compteur defilement > 6) compteur defilement = 0; //si le

compteur dépasse 6 couleurs

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 281/326

delay (500) ;
}

void couleur (int numeroCouleur)
{
switch (numeroCouleur)
{
case 0 : //rouge
analogWrite (led rouge, 0); //rapport cyclique au minimum
pour une meilleure luminosité de la LED
//qui je le rappel est commandée
en "inverse"
// (0 => LED allumée ; 255 -> LED
éteinte)
analogWrite (led verte, 255);
analogWrite (led bleue, 255);
break;
case 1 : //vert
analogWrite (led rouge, 255);
analogWrite (led verte, 0);
analogWrite (led bleue, 255);
break;
case 2 : //bleu
analogWrite (led rouge, 255);
analogWrite (led verte, 255);
analogWrite (led bleue, 0);
break;
case 3 : //jaune
analogWrite (led rouge, 0);
analogWrite (led verte, 0);
analogWrite (led bleue, 255);
break;
case 4 : //violet
analogWrite (led rouge, 0);
analogWrite (led verte, 255);
analogWrite (led bleue, 0);
break;
case 5 : //bleu ciel
analogWrite (led rouge, 255);
analogWrite (led verte, 0);
analogWrite (led bleue, 0);
break;
case 6 : //blanc
analogWrite (led rouge, 0);
analogWrite (led verte, 0);
analogWrite (led bleue, 0);
break;
default : //"noir"
analogWrite (led rouge, 255);
analogWrite (led verte, 255);
analogWrite (led bleue, 255);
break;

Bon ben je vous laisse lire le code tout seul, vous étes assez préparé pour le faire, du moins jespére. Pendant ce temps je vais
continuer la rédaction de ce chapitre.

Bon, on est arrivé a modifier les couleurs d'une LED RGB juste avec des "impulsions", plus exactement en utilisant directement le
signal PWM.

@ Mais comment faire sije veuxun signal complétement analogique ?

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 282/326

Clest justement l'objet de cette sous-partie : créer un signal analogique a partir d'un signal numérique.

Cependant, avant de continuer, je tiens a vous informer que I'on va aborder des notions plus profondes en électronique
et que vous n'étes pas obligé de lire cette sous-partie si vous ne vous en sentez pas capable. Revenez plus tard sivous
le voulez.
Pour ceux qui cela intéresserait vraiment, je ne peux que vous encourager a vous accrocher et éventuellement lire ce
chapitre pour mieux comprendre certains points essentiels utilisés dans cette sous-partie.

Sur une période d'un signal périodique, on peut calculer sa valeur moyenne. En fait, il faut faire une moyenne de toutes les
valeurs que prend le signal pendant ce temps donné. C'est une peu lorsque l'on fait la moyenne des notes des éléves dans une
classe, on additionne toutes les notes et on divise le résultat par le nombre total de notes. Je ne vais prendre qu'un seul exemple,
celui dont nous avons besoin : le signal carré.

Le signal carré

Reprenons notre signal carré :

sV

"o,

0 al T

t

J'ai modifié¢ un peu l'image pour vous faire apparaitre les temps. On observe donc que du temps (J (I'origine) au temps T", on a
une période du signal. 47T correspond au moment ou le signal change d'état. En somme, il s'agit du temps de I'état haut, qui
donne aussile temps a I'état bas et finalement permet de calculer le rapport cyclique du signal.

Donnons quelques valeurs numériques a titre d'exemple :

* T =1ms
® 4 = ().5 (correspond a un rapport cyclique de 50%)

La formule permettant de calculer la valeur moyenne de cette période est la suivante :

< Vmaymﬂe == Ly 38l o {;i - {T _ GT}

La valeur moyenne d'un signal se note avec des chevrons <, > autour de la lettre indiquant de quelle grandeur
physique il s'agit.

Explications

Premiérement dans la formule, on calcule la tension du signal sur la premiére partie de la période, donc de (ja gT°. Pour ce faire,
on multiplie {7y, qui est la tension du signal pendant cette période, par le temps de la premicre partie de la période, soit T". Ce

quidonne : /3 x aT.

Deuxi¢mement, on fait de méme avec la deuxi¢éme partie du signal. On multiplie le temps de ce bout de période par la tension [Ty
pendant ce temps. Ce temps vaut " — 5T Le résultat donne alors : Llp » {T — aT}

Finalement, on divise le tout par le temps total de la période aprés avoir additionné les deuxrésultats précédents.

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-543666-le-condensateur-en-regime-continu.html
http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 283/326

Apres simplification, la formule devient : <X Vipoyenne »>=a X Uy + Uz — a x Uz

Et cela se simplifie encore en :

< Vmayenng ==a X {U]_ — Uz] + [/p</math>

Dans notre cas, comme il s'agit d'un signal carré ayant que deuxvaleurs : OV et 5V, on va pouvoir simplifier le calcul par
celui-ci : = Vmamﬂg =g x Ujcarliy =0

Les formules que I'on vient d'apprendre ne s'appliquent que pour une seule période du signal. Sile signal a toujours la
méme période et le méme rapport cyclique alors le résultat de la formule est admissible a l'ensemble du signal. En

@ revanche, sile signal a un rapport cyclique qui varie au cours du temps, alors le résultat donné par la formule n'est
valable que pour un rapport cyclique donné. Il faudra donc calculer la valeur moyenne pour chaque rapport cyclique
que posséde le signal.

De ce fait, si on modifie le rapport cyclique de la PWM de fagon maitrisée, on va pouvoir créer un signal analogique de la forme
qu'on le souhaite, compris entre 0 et 5V, en extrayant la valeur moyenne du signal. On retiendra également que, dans cette

formule unigquement, le temps n'a pas d'importance.

Alors, mais comment faire pour extraire la valeur moyenne du signal de la PWM, me direz-vous. Eh bien on va utiliser les
propriétés d'un certain couple de composants trés connu : le couple RC ou résistance-condens ateur.

@ La résistance on connait, mais, le condensateur... tu nous avais pas dit qu'il servait a supprimer les parasites ?

Si, bien siir, mais il posséde plein de caractéristiques intéressantes. C'est pour cela que c'est un des composants les plus utilisé
en ¢électronique. Cette fois, je vais vous montrer une de ses caractéristiques qui va nous permettre d'extraire cette fameuse valeur
moyenne.

Le condensateur
Je vous ai déja parlé de la résistance, vous savez qu'elle limite le courant suivant la loi d'Ohm. Je vous ai aussi parlé du

condensateur, je vous disais qu'il absorbait les parasites créés lors d'un appuisur un bouton poussoir. A présent, on va voir un
peu plus en profondeur son fonctionnement car on est loin d'avoir tout vu !

Le condensateur, je rappel ses symboles : _Ij I { —|:| E— est constitué de deuxplaques
+

+ +

métalliques, des armatures, posées face a face et isolées par... un isolant ! @ Donc, en somme le condensateur est équivalent a
un interrupteur ouvert puisqu'iln'y a pas de courant qui peut passer entre les deux armatures.

Chaque armature sera mise a un potentiel électrique. Il peut étre égal sur les deux armatures, mais l'utilisation majoritaire fait que
les deux armatures ont un potentiel différent.

Le couple RC

Bon, et maintenant ? Maintenant on va faire un petit montage électrique,vous pouvez le faire si vous voulez, non en fait faites-le
vous comprendrez mes explications en méme temps que vous ferez I'expérience qui va suivre.

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 284/326

Voila le montage a réaliser :

R decharge c

Les valeurs des composants sont :

[7 = H}/ (utilisez la tension 5V fournie par votre carte Arduino)
C = 1000uF

Rchurge = 1kf2

Rdechm“ge = 1k0Q2

Le montage est terminé ? Alors fermez l'interrupteur...

@) Que se passe-t-il ?

Lorsque vous fermez l'interrupteur, le courant peut s'établir dans le circuit. Il va donc aller allumer la LED. Ceci fait abstraction du
condensateur. Mais, justement, dans ce montage il y a un condensateur. Qu'observez-vous ? La LED ne s'allume pas
immédiatement et met un peu de temps avant d'étre complétement allumée.

Ouvrez l'interrupteur.

Et 13, qu'y a-t-il de nouveau ? En théorie, la LED devrait étre éteinte, cependant, le condensateur fait des siennes. On voit la LED
s'éteindre tout doucement et pendant plus longtemps que lorsqu'elle s'allumait.

Troublant, n'est-ce pas ? @

Vous pouvezréitérer 'expérience en changeant la valeur des composants, sans jamais descendre en dessous de 220
Ohm pour la résistance de décharge.

Explications

Je vais vous expliquer ce phénomene assez étrange. Vous l'aurez sans doute deviné, c'est le condensateur qui joue le premier role
!

En fait, lorsque l'on applique un potentiel différent sur chaque armature, le condensateur n'aime pas trop ¢a. Je ne dis pas que ¢a
risque de l'endommager, simplement qu'il n'aime pas ¢a, comme sivous on vous forcait 8 manger quelque chose que vous n'aimez
pas.

Du coup, lorsqu'on lui applique une tension de 5V sur une des ses armatures et l'autre armature est reliée a la masse, il met du

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 285/326

temps a accepter la tension. Et plus la tension croit, moins il aime ¢a et plus il met du temps a l'accepter. Si on regarde la tension
auxbornes de ce pauvre condensateur, on peut observer ceci :

La tension augmente de facon exponentielle auxbomes du condensateur lorsqu'on le charge a travers une résistance. Oui, on
appelle ¢a la charge du condensateur. C'est un peu comme si la résistance donnait un mauvais goit a la tension et plus la

résistance est grande, plus le gotit est horrible et moins le condensateur se charge vite. C'est l'explication de pourquoi la LED
s'est éclairée lentement.

Lorsque l'on ouvre l'interrupteur, il se passe le phénomene inverse. L3, le condensateur peut se débarrasser de ce mauvais gofit
qu'il a accumulé, sauf que la résistance et la LED l'en empéchent. Il met donc du temps a se décharger et la LED s'éteint
doucement :

Termian

Pour terminer, on peut déterminer le temps de charge et de décharge du condensateur a partir d'un paramétre trés simple, que
voici :

r=RxC

Avec :
e 7 :(prononcez"to") temps de charge/décharge en secondes (s)

e [:valeurde larésistance en Ohm ({})
e (7:valeurde la capacité du condensateur en Farad (F)

Cette formule donne le temps 7 qui correspond a 63% de la charge a la tension appliquée au condensateur. On considere que le
condensateur est completement chargé a partir de 3 (soit 95% de la tension de charge) ou B (99% de la tension de charge).

Imposons notre PWM !

m Bon, trés bien, mais quel est le rapport avec la PWM ?

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 286/326
w/

Ha, haa !

Alors, pour commencer, vous connaissez la réponse.

@ Depuis quand ?

Depuis que je vous ai donné les explications précédentes.

Deés que I'on aura imposé notre PWM au couple RC, il va se passer quelque chose. Quelque chose que je viens de vous
expliquer.

A chaque fois que le signal de la PWM sera au NL 1, le condensateur va se charger. Dés que le signal repasse au NL 0, le
condensateur va se décharger. Et ainsi de suite. En somme, cela donne une variation de tension auxbornes du condensateur
semblable a celle-ci:

@ Qu'y a-t-il de nouveau par rapport au signal carré, a part sa forme bizarroide !?
Dans ce cas, rien de plus, sion calcule la valeur moyenne du signal bleu, on trouvera la méme valeur que pour le signal rouge.

(Ne me demandez pas pourquoi, c'est comme ¢a, c'est une formule trés compliquée qui le dit @)).

Précisons que dans ce cas, encore une fois, le temps de charge/décharge 3+ du condensateur est choiside fagon a ce qu'il soit
égal a une demi-période du signal. Que se passera-t-il sion choisit un temps de charge/décharge plus petit ou plus grand ?
Constante de temps T supérieure a la période

Voila le chronogramme lorsque la constante de temps de charge/décharge du condensateur est plus grande que la période du
signal :

Ce chronogramme permet d'observer un phénoméne intéressant. En effet, on voit que la tension auxbornes du condensateur
n'atteint plus le +5Vet le OV comme au chronogramme précédent. Le couple RC étant plus grand que précédemment, le
condensateur met plus de temps a se charger, du coup, comme le signal "va plus vite" que le condensateur, ce dernier ne peut se

www.siteduzero.com

http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 287/326

charger/décharger complétement.

Sion continue d'augmenter la valeur résultante du couple RC, on va arriver a un signal comme ceci :

Et ce signal, Mesdames et Messieurs, c'est la valeur moyenne du signal de la PWM !! @

Je vous sens venir avec vos grands airs en me disant : " Oui, mais la le signal il est pas du tout constant pour un niveau de
tension. Il arréte pas de bouger et monter descendre | Comment on fait si on veut une belle droite ?"

"Eh bien, dirais-je, cela n'est pas impossible, mais se révéle étre une tache difficile et contraignante. Plusieurs arguments
viennent conforter mes dires".
Le temps de stabilisation entre deux paliers

Je vais vous montrer un chronogramme qui représente le signal PWM avec deuxrapports cycliques différents. Vous allez
pouvoir observer un phénoméne "quise cache" :

Voyez donc ce fameux chronogramme. Qu'en pensez-vous ? Ce n'est pas merveilleux hein !

Quelques explications : pour passer d'un palier a un autre, le condensateur met un certain temps. Ce temps est grosso modo celui
de son temps de charge (constante RC). C'est-a-dire que plus on va augmenter le temps de charge, plus le condensateur mettra
du temps pour se stabiliser au palier voulu. Or silon veut créer un signal analogique qui varie assezrapidement, cela va nous
poser probléeme.

La perte de temps en conversion

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 288/326

Clest ce que je viens d'énoncer, plus la constante de temps est grande, plus il faudra de périodes de PWM pour stabiliser la
valeur moyenne du signal a la tension souhaitée. A l'inverse, sion diminue la constante de temps, changer de palier sera plus
rapide, mais la tension auxbornes du condensateur aura tendance a suivre le signal. C'est le premier chronogramme que lI'on a vu
plus haut.

Finalement, comment calibrer correctement la constante RC ?

Cela s'avere étre délicat. Il faut trouver le juste milieu en fonction du besoin que l'on a.

Sil'on veut un signal qui soit le plus proche possible de la valeur moyenne, il faut une constante de temps trés grande.
Siau contraire on veut un signal qui soit le plus rapide et que la valeur moyenne soit une approximation, alors il faut une
constante de temps faible.
e Sion veut un signal rapide et le plus proche possible de la valeur moyenne, on a deuxsolutions qui sont :
o mettre un deuxiéme montage ayant une constante de temps un peu plus grande, en cascade du premier (on perd
quand méme en rapidité)
o changer la fréquence de la PWM

A partir de maintenant, vous allez pouvoir faire des choses amusantes avec la PWM. Cela va nous servir pour les moteurs pour
ne citer qu'eux. Mais avant, car on en est pas encore la, je vous propose un petit TP assez sympa. Rendez-vous au prochain
chapitre ! @

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 289/326

[Exercice] Une animation "YouTube"

Dans ce petit exercice, je vous propose de faire une animation que vous avez tous vu au moins une fois dans votre vie : le .gif de
chargement YouTube !

Pour ceux qui se posent des questions, nous n'allons pas faire de Photoshop ou quoi que ce soit de ce genre. Non, nous (vous
en fait ®) allons le faire ... avec des LED !

Alors place a l'exercice !

Pour cloturer votre apprentissage avec les voies analogiques, nous allons faire un petit exercice pour se détendre. Le but de ce
demier est de réaliser une des animations les plus célebres de l'internet : le .gif de chargement YouTube (qui est aussiutilisé sur
d'autres plateformes et applications).

Nous allons le réaliser avec des LED et faire varier la vitesse de défilement grace a un potentiometre.

Pour une fois, plutét qu'une longue explication je vais juste vous donner une liste de composants utiles et une vidéo qui parle
d'elle méme !

Bon courage !

e 6 LED + leurs résistances de limitation de courant
e Un potentiometre
o Une Arduino, une breadboard et des fils !

Voici tout d'abord le schéma, car une bonne base électronique permettra de faire un beau code ensuite. Pour tout les lecteurs qui
ne pensent qu'aux circuits et ne regardent jamais la version "photo" du montage, je vous invite pour une fois a y faire attention,
surtout pour l'aspect géométrique du placement des LED.

En passant, dans l'optique de faire varier la luminosité des LED, il faudra les connecter sur les broches PWM (notées avec un '~').
Le potentiométre quant a lui sera bien entendu connecté a une entrée analogique (la 0 dans mon cas). Comme toujours, les LED

auront leur anode reliées au +5V et seront pilotées par état bas (important de le rappeler pour le code ensuite).

Secret (cliquez pour afficher)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 290/326

OUINP.JY 3

e

333 A
WLIITIE T 111
[[N ¢ -

=
3

=
3
!

z
a
g

h §

www.siteduzero.com

http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques

291/326

33 5v Vin
Power
= AREF D2 :-’_M_/ xm
Arduino on = o
D10 L—'—Wr m
D9 &—'—VW\ 74
§_ o] QN — m
3 F 4
€ 7 b= »
g- P F Y
£ e VWA Iq
]
A0 ® s W———ww\ -
=
= >
- | Pt
: l:r% 03 _—_WV\
=
=
—] - D1 2 ’I/
s E D0 |
GND
Y
L

Alors petit défi avant de regarder la solution... En combien de ligne avez vous réussi a écrire votre code (proprement, sans tout
mettre sur une seule ligne, pas de triche !) ? Personnellement je l'ai fait en 23 lignes, en faisant des beaux espaces propres. @

Bon allez, tréve de plaisanterie, voici la solution, comme a I'accoutumé dans des balises secrétes...

Les variables globales

Comme vous devez vous en douter, nous allons commencer par déclarer les différentes broches que nous allons utiliser. [l nous
en faut sixpour les LED et une pour le potentiometre de réglage de la vitesse d'animation. Pour des fins de simplicité dans le
code, jaimis les sixsorties dans un tableau. Pour d'autres fins de facilité, j'ai aussimis les "niveaux" de luminosité dans un
tableau de char que j’appellerai "pwm". Dans la balise suivante vous trouverez 'ensemble de ces données :

Secret (cliquez pour afficher)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 4 : [Pratique] Les grandeurs analogiques 292/326

Code : C
const int LED[6] = {3,5,6,9,10,11}; //sortie LEDs
const char pwm[6] = {255,210,160,200,220,240}; //niveaux de
luminosité utilisé
const int potar = 0; //potentiometre sur la broche 0
Le setup

Personne ne devrais se tromper dans cette fonction, on est dans le domaine du connu, vu et revu !
Il nous suffit juste de mettre en entrée le potentiométre sur son convertisseur analogique et en sortie mettre les LED (une simple
boucle for suffit grace au tableau @).

Secret (cliquez pour afficher)
Code : C

void setup ()

{

pinMode (potar, INPUT); //le potentiométre en entrée
//les LEDs en sorties

for (int 1i=0; i<6; i++)
pinMode (LED[i], OUTPUT) :;

}

La loop

Passons au cceur du programme, la boucle 1oop () !Je vais vous la divulguer dés maintenant puis l'expliquer ensuite :
Secret (cliquez pour afficher)

Code : C

void loop ()

{for(int i=0; i<6; i++) //étape de 1'animation
{for(int n=0; n<6; n++) //mise a jour des LEDs
{analogWrite(LED[n], pwm[(n+i)%671);
int temps = analogRead (potar); //récupere le temps
delay (temps/6 + 20); //tmax = 190ms, tmin 20ms

Comme vous pouvez le constater, cette fonction se contente de faire deuxboucle. L'une sert a mettre a jour les "phases de
mouvements" et l'autre met a jour les PWM sur chacune des LED.

Les étapes de l'animation
Comme expliqué précédemment, la premi¢re boucle concerne les différentes phases de I'animation. Comme nous avons six LED

nous avons sixniveaux de luminosité et donc six étapes a appliquer (chaque LED prenant successivement chaque niveau). Nous
verrons la seconde boucle apres.

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 4 . [Pratique] Les grandeurs analogiques 293/326

Avant de passer a la phase d'animation suivante, nous faisons une petite pause. La durée de cette pause détermine la vitesse de
l'animation. Comme demandé dans le cahier des charges, cette durée sera réglable a l'aide d'un potentiometre. La ligne 9 nous
permet donc de récupérer la valeur lue sur 'entrée analogique. Pour rappel, elle variera de 0 a 1023. Sil'on applique cette valeur
directement au délai, nous aurions une animation pouvant aller de trés trés trés rapide (potar au minimum) a trés tres trés lent
(delay de 1023 ms) lorsque le potar est dans l'autre sens.

Afin d'obtenir un réglage plus sympa, on fait une petite opération sur cette valeur. Pour ma part j'ai décidé de la diviser par 6, ce
quidonne Oms < temps < 1704 5. Estimant que 0 ne permet pas de faire une animation (puisqu'on passerait directement

a I'étape suivante sans attendre), jajoute 20 a ce résultat. Le temps final sera donc compris dans l'intervalle :

20ms < temps < 190ms.

Mise a jour des LED

La deuxi¢éme boucle possede une seule ligne qui est la clé de toute I'animation ! Cette boucle sert a mettre a jour les LED pour
qu'elles aient toute la bonne luminosité. Pour cela, on utilisera la fonction analogWrite() (car aprés tout c'est le but du chapitre !).
Le premier parametre sera le numéro de la LED (grace une fois de plus au tableau) et le second sera la valeur du PWM. C'est pour
cette valeur que toute l'astuce survient. En effet, j'utilise une opération mathématique un peu particuliére que 'on appelle modulo.
Pour ceux quine se rappelle pas de ce dernier, nous l'avons vu ily a trés longtemps dans la premiére partie, deuxi¢me chapitres
sur les variables. Cet opérateur permet de donner le résultat de la division euclidienne (mais je vous laisse aller voir le cours pour
plus de détail).

Pour obtenir la bonne valeur de luminosité il me faut lire la bonne case du tableau pwm[]. Ayant sixniveaux de luminosité, jai six
case dans mon tableau. Mais comment obtenir le bonne ? Eh bien simplement en additionnant le numéro de la LED en train d'étre
mise a jour (donné par la seconde boucle) et le numéro de I'étape de I'animation en cours (donné par la premicre boucle).

Seulement imaginons que nous mettions a jour la sixieme LED (indice 5) pour la quatriéme étape (indice 3). Ca nous donne 8.
Hors 8 est plus grand que 5 (nombre maximale de I'index pour un tableau de 6 cases). En utilisant le modulo, nous prenons le
résultat de la division de 8/5 soit 3. [l nous faudra donc utiliser la case numéro 3 du tableau pwm[] pour cette utilisation. Tout
simplement @

Je suis conscient que cette écriture n'est pas simple. Il est tout a fait normal de ne pas l'avoir trouvé et demande une
./ certaine habitude de la programmation et ses astuces pour y penser.

Pour ceux qui se demande encore quel est l'intérét d'utiliser des tableauxde données, voici deux éléments de réponse.

e Admettons jutilise une Arduino Mega qui possede 15 pwm, jlaurais pu allumer 15 LEDs dans mon animation. Mais si
jlavais fait mon setup de manicre linéaire, il maurait fallu rajouter 9 lignes. Grace au tableau, jai juste besoin de les ajouter
a ce dernier et de modifier 'indice de fin pour l'initialisation dans la boucle for.

e [améme remarque s'applique a l'animation. En modifiant simplement les tableaux je peux changer rapidement I'animation,
ses niveaux de luminosité, le nombre de LEDs, l'ordre d'éclairage etc...

Le programme complet

Et pour tout ceux qui doute du fonctionnement du programme, voici dés maintenant le code complet de la machine ! (Attention
lorsque vous faites vos branchement a mettre les LED dans le bon ordre, sous peine d'avoir une séquence anarchique).

Secret (cliquez pour afficher)

Code : C

const int LED[6] = {3,5,6,9,10,11}; //sortie LEDs

const char pwm[6] = {255,210,160,200,220,240}; //niveaux de
luminosité utilisé

const int potar = 0; //potentiometre sur la broche 0

void setup ()

{

pinMode (potar, INPUT);
for(int i=0; i<6; i++)
pinMode (LED[i], OUTPUT) ;

}

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-461887-1-le-langage-arduino-1-2.html#ss_part_2
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 4 :

[Pratique] Les grandeurs analogiques 294/326

void loop ()

for (int i=0; i<6; i++) //étape de 1'animation

{
for (int n=0; n<6; n++) //mise a jour des LEDs
{
analogWrite (LED[n], pwm[(n+i)%6]);
}
int temps = analogRead (potar);
delay (temps/6 + 20); //tmax = 190ms, tmin = 20ms

La mise en bouche des applications possibles avec les entrées/sortice PWM est maintenant terminée. Je vous laisse réfléchir a ce
que vous pourriez faire avec. Tenez, d'ailleurs les chapitres de la partie suivante utilisent ces entrées/sorties et ce n'est pas par

hasard...

Vous venez de terminer une des parties essentiels, alors je vous fait savoir que dorénavant, vous pouvez parcourir la suite du
cours dans l'ordre que vous voulez !

Sivous avez envie d'en apprendre plus sur la communication entre votre ordinateur et votre carte Arduino, alors allezjeter un
coup d’ceil 4 la partie traitant du logiciel Processing.

Sien revanche votre but est de créer un robot, consultez les deux prochaines parties.

Vous voulez afficher du texte sur un petit écran LCD, alors dirigez-vous vers la partie traitant de ce sujet.

Bon voyage ! @

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 295/326

Vous souhaitez rendre votre projet un peu plus autonome, en le disloquant de son attachement a votre ordinateur parce que
vous voulez afficher du texte ? Eh bien grice auxafficheurs LCD, cela va devenir possible ! Vous allez apprendre a utiliser ces
afficheurs d'une certaine catégorie pour pouvoir réaliser vos projet les plus fous.

Il est courant d'utiliser ces écrans permettant l'affichage du texte en domotique, robotique, voir méme pour déboguer un
programme !

Avec eux, vos projet n'aurons plus la méme allure !

-—-> Matériel nécessaire : dans la balise secret pour la partie 7.

Les écrans LCD

Vous avez appris plus tot comment interagir avec l'ordinateur, lui envoyer de l'information. Mais maintenant, vous voudrez
stirement pouvoir afficher de I'information sans avoir besoin d'un ordinateur. Avec les écrans LCD, nous allons pouvoir afficher
du texte sur un écran quin'est pas trés coliteux et ainsi faire des projets sensationnels !

Mettons tout de suite au clair les termes : LCD signifie "Liquid Crystal Display" et se traduit, en frangais, par "Ecran & Cristaux
Liquides" (mais on a pas d'acronymes classe en frangais donc on parlera toujours de LCD). Ces écrans sont PARTOUT ! Vous en
trouverez dans plein d'appareils électroniques disposant d'afficheur : les montres, le tableau de bord de votre voiture, les
calculatrices, etc. Cette utilisation intensive est due a leur faible consommation et cofit.

Mais ce n'est pas tout ! En effet, les écrans LCD sont aussisous des formes plus complexes telles que la plupart des écrans
d'ordinateur ainsi que les téléviseurs a écran plat. Cette technologie est bien maitrisée et donc le coiit de production est assez
bas. Dans les années a venir, ils vont avoir tendance a étre remplacés par les écrans a affichage LED qui sont pour le moment
trop chers.

J'en profite pour mettre l'alerte sur la différence des écrans a LED. Il en existe deuxtypes :

e les écrans a rétro-éclairage LED : ceuxsont des écrans LCD tout a fait ordinaires qui ont simplement la
particularité d'avoir un rétro-éclairage a LED a la place des tubes néons. Leur prixest du méme ordre de
grandeur que les LCD "normaux". En revanche, la qualité d'affichage des couleurs semble meilleure comparés
aux LCD "normaux".

e les écrans a affichage LED : ceuxsine disposent pas de rétro-éclairage et ne sont ni des écrans LCD, ni des
plasma. Ce sont des écrans qui, en lieu et place des pixels, se trouvent des LED de tres tres petite taille. Leur
cott est prohibitif pour le moment, mais la qualité de contraste et de couleur inégale tous les écrans existants !

Les deux catégories précédentes (écran LCD d'une montre par exemple et celui d'un moniteur d'ordinateur) peuvent étre
différenci¢es assezrapidement par une caractéristique simple : /a couleur. En effet, les premiers sont monochromes (une seule
couleur) tandis que les seconds sont colorés (rouge, vert et bleu). Dans cette partie, nous utiliserons uniquement le premier type
pour des raisons de simplicité et de cotit.

Fonctionnement de l'écran

N'étant pas un spécialiste de l'optique ni de I'électronique "bas-niveau" (jonction et tout le tralala) je ne vais pas vous faire un
cours détaillé sur le "comment ca marche ?" mais plutot aller a 'essentiel, vers le "pourquoi ¢a s'allume ?".

Comme son nom l'indique, un écran LCD posséde des cristaux liquides. Mais ce n'est pas tout ! En effet, pour fonctionner il faut
plusieurs choses.

Sivous regardez de trés prés votre écran (éteint pour pas vous bousiller les yeux) vous pouvez voir une grille de carré. Ces
carrés sont appelés des pixels (de l'anglais "Picture Element", soit "Elément d'image" en frangais, encore une fois c'est moins
classe). @ Chaque pixel est un cristal liquide. Lorsque aucun courant ne le traverse, ses molécules sont orientées dans un sens

(admettons, 0°). En revanche lorsqu'un courant le traverse, ses molécules vont se tourner dans la méme direction (90°). Wila pour
la base.

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-457282-1-presentation.html#ss_part_3
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 296/326
@ Mais pourquoiily a de la lumiére dans un cas et pas dans l'autre ? »
-
h‘-.:__""'-__‘ B
Tout simplement parce que cette lumiere est polarisée. Cela signifie que la lumiére LAY o —

est orientée dans une direction (c'est un peu compliqué & démontrer, je vous
demanderais donc de I'admettre). En effet, entre les cristaux liquides et la source
lumineuse se trouve un filtre polariseur de lumicre. Ce filtre va orienter la lumiére
dans une direction précise.

Entre vos yeuxet les cristauxse trouve un autre écran polariseur, qui est
perpendiculaire au premier. Ainsi, il faut que les cristaux liquides soient dans la
bonne direction pour que la lumi¢re passe de bout en bout et revienne a vos yeux.
Un schéma vaut souvent mieux qu'un long discours, je vous conseille donc de
regarder celui sur la droite de l'explication pour mieux comprendre (source :
Wikipédia).

Enfin, vient le rétro-éclairage (fait avec des LED) qui vous permettra de lire 'écran
méme en pleine nuit (sinon il vous faudrait I'éclairer pour voir le contraste).

I—
*‘:IHI
N

Afficheur 3 chiffres
1ets: fitres polarisants ;

2

4:
3:
6.

électrodes avant ;
Electrode arriére ;
cristaux liquides ;
mirair.

Sivous voulez plus d'informations sur les écrans LCD, j'invite votre curiosité a se diriger vers ce lien Wikipédia ou

d'autres sources.

Normalement, pour pouvoir afficher des caractéres sur I'écran il nous faudrait activer individuellement chaque pixel de I'écran. Un
caractére est représenté par un bloc de 7*5 pixels. Ce qui fait qu'un écran de 16 colonnes et 2 lignes représente un total de
16%2*7*5 = 1120 pixels ! @ Heureusement pour nous, des ingénieurs sont passés par la et nous ont simplifié la tache.

Le décodeur de caracteres

Tout comme il existe un driver vidéo pour votre carte graphique d'ordinateur, il existe un driver "LCD" pour votre afficheur.
Rassurez-vous, aucun composant ne s'ajoute a votre liste d'achat puisqu'il est intégré dans votre écran. Ce composant va servir
a décoderun ensemble "simple" de bits pour afficher un caractére a une position précise ou exécuter des commandes comme
déplacer le curseur par exemple. Ce composant est fabriqué principalement par Hitachi et se nomme le HC44780. Il sert de
décodeur de caractéres. Ainsi, plutot que de devoir multiplier les signaux pour commander les pixels un a un, il nous suffira
d'envoyer des octets de commandes pour lui dire "écris moi 'zéros' a partir de la colonne 3 sur la ligne 1".

Ce composant possede 16 broches que je vais bri¢vement décrire :

Ne° Nom Role
1 VSS Masse

2 Vdd +5V

3 VO Réglage du contraste

4 RS Sélection du registre (commande ou donnée)
5 R/W Lecture ou écriture

6 E Entrée de validation

7a14 | DO a D7 | Bits de données

15 A Anode du rétroéclairage (+5V)

16 K Cathode du rétroéclairage (masse)

Normalement, pour tous les écrans LCD (non graphiques) ce brochage est le méme. Donc pas d'inquiétude lors des
branchements, il vous suffira de vous rendre sur cette page pour consulter le tableau.

www.siteduzero.com

http://fr.wikipedia.org/wiki/%C3%89cran_%C3%A0_cristaux_liquides
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 297/326

Par la suite, les broches utiles qu'il faudra relier a 'Arduino sont les broches 4, 5 (facultatives), 6 et les données (7 a 14 pouvant
étre réduite a 8 a 14) en oubliant pas l'alimentation et la broche de réglage du contraste.

Ce composant possede tout le systéme de traitement pour afficher les caractéres. Il contient dans sa mémoire le schéma
d'allumage des pixels pour afficher chacun d'entre eux. Wici la table des caractéres affichables :

LDW;:EEEE Qooo)(oolofoolljoloo|oiol|oli0jolil|j1010)1011 1100110 f1infi1il
dbhit T T e
ox0000 R e e
H = AR man BN mae e . i .
Sl 1 = 111l (AR [| e
B S man N wanH A ERE s . |nmn . -
ooxDD10 e BB T T R T e
- B B N mnn" NN mans e .
cooanst || R el |y (ERE R
whmm | AT AT = = mmmnn [® H
cozon | ||SEr i 3 E s T b L
B R EE unnni nnnl RS mmmEn | ® - : uEn
oo | T LR =]
Fa e R R . R Hannnl
conto ||l Bl L RTINS 7 S
TR R [e | B B | =mam mniun | mmmnm | .
o111 B al o e el e e i
e |® E|E E|E mnnn | mmEEm | ® .'“"_
ox 1000 e T e e
M | AR R - H u
oo | A1 T, el T LR
. - - B u mmmmn | m | m u
u e REE A nEE mnEEEE " wEnEn | Enmnn | mammn | ® ..
| E M| 'H H u wannn [memmn [w
ool 100 B ool L o e e =
Es mm | E " e— - H
conton |||l P BBy el S T
" E R . mhunn | mmmmm | mm |
eto ||| LIPS LR)
R man . m w | wmmn | R
xoexx1111 o ____m____ s e _______ -.:=

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 298/326

Texte ou Graphique ?

Dans la grande famille afficheur LCD, on distingue plusieurs catégories :

e Les afficheurs alphanumériques
e Les afficheurs graphiques monochromes
e Les afficheurs graphiques couleur

Les premiers sont les plus courants. Ils permettent d'afficher des lettres, des chiffres et quelques caractéres spéciaux. Les
caractéres sont prédéfinis (voir table juste au-dessus) et on a donc aucunement besoin de gérer chaque pixel de I'écran.

Les seconds sont déja plus avancés. On a accés a chacun des pixels et on peut donc produire des dessins beaucoup plus
évolués. IIs sont cependant légeérement plus onéreux que les premiers.

Les derniers sont I'évolution des précédents, la couleur en plus (soit 3 fois plus de pixels a gérer : un sous-pixel pour le rouge, un
autre pour le bleu et un dernier pour le vert, le tout forme la couleur d'un seul pixel).

Pour le TP on se servira d'afficheur de la premiere catégorie car ils suffisent a faire de nombreux montages et restent accessibles
pour des zéros.

Afficheur alphanumérique Afficheur graphique (monochrome) Afficheur graphique (couleur)

TOPURY Torway B
[234567890123456 I

Ce n'est pas la taille qui compte !

Les afficheurs existent dans de nombreuses tailles. Pour les afficheurs de type textes, on retrouve le plus fréquemment le format 2
lignes par 16 colonnes. Il en existe cependant de nombreux autres avec une seule ligne, ou 4 (ou plus) et 8 colonnes, ou 16, ou 20
ou encore plus ! Libre a vous de choisir la taille qui vous plait le plus, sachant que le TP devrait s'adapter sans souci a toute taille
d'écran (pour ma part ce sera un 2 lignes 16 colonnes) !

La couleur, c'est important

Nan je blague ! Prenez la couleur qui vous plait ! Vert, blanc, bleu, jaune, amusez-vous ! (moi c'est écriture blanche sur fond bleu,
mais je réve d'un afficheur a la matrix, noir avec des écritures vertes !)

La communication paralléle

De maniére classique, on communique avec I'écran de manicre paralléle. Cela signifie que l'on envoie des bits par blocs, en
utilisant plusieurs broches en méme temps (opposée a une transmission série ou les bits sont envoyés un par un sur une seule
broche).

Comme expliqué plus tot dans ce chapitre, nous utilisons 10 broches différentes, 8 pour les données (en paralléle donc) et 2 pour
de la commande (E : Enable et RS : Registre Selector). La ligne R/W peut étre connecté a la masse sil'on souhaite uniquement
faire de l'écriture.

Pour envoyer des données sur I'écran, c'est en fait assez simple. Il suffit de suivre un ordre logique et un certain timing pour que
tout se passe bien. Tout d'abord, il nous faut placer la broche RS a 1 ou 0 selon que l'on veut envoyer une commande, comme par
exemple "déplacer le curseur a la position (1;1)" ou que l'on veut envoyer une donnée : "écris le caractére 'a' ". Ensuite, on place
sur les 8 broches de données (D0 a D7) la valeur de la donnée a afficher. Enfin, il suffit de faire une impulsion d'au moins 450 ns
pour indiquer a I'écran que les données sont prétes. C'est aussi simple que ¢a !

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 299/326

Cependant, comme les ingénieurs d'écrans sont conscients que la communication paralléle prend beaucoup de broches, ils ont
inventé un autre mode que j'appellerai "semi-paralléle". Ce demier se contente de travailler avec seulement les broches de
données D4 a D7 (en plus de RS et E) et il faudra mettre les quatre autres (D0 a D3) a la masse. Il libére donc quatre broches.
Dans ce mode, on fera donc deuxfois le cycle "envoi des données puis impulsion sur E" pour envoyer un octet complet.

| Ne vous inquiétez pas a l'idée de tout cela. Pour la suite du chapitre nous utiliserons une libraire nommée LiquidCrystal
/' quise chargera de gérer les timings et I'ensemble du protocole.

Pour continuer ce chapitre, le mode "semi-paralléle” sera choisi. Il nous permettra de garder plus de broches disponibles pour de
futurs montages et est souvent cablé par défaut dans de nombreux shields (dont le mien). La partie suivante vous montrera ce
type de branchement. Et pas de panique, je vous indiquerai également la modification a faire pour connecter un écran en mode
"paralléle complet".

La communication série

Lorsque 'on ne posseéde que trés peu de broches disponibles sur notre Arduino, il peut étre intéressant de faire appel a un
composant permettant de communiquer par voie série avec l'écran. Un tel composant se chargera de faire la conversion entre les
données envoyées sur la voie série et ce qu'il faut afficher sur I'écran.

Le gros avantage de cette solution est qu'elle nécessite seulement un seul fil de donnée (avec une masse et le VCC) pour
fonctionner la ou les autres méthodes ont besoin de presque une dizaine de broches.

Toujours dans le cadre du prochain TP, nous resterons dans le classique en utilisant une connexion parall¢le. En effet, elle nous
permet de garder l'approche "standard" de I'écran et nous permet de garder la liaison série pour autre chose (encore que l'on
pourrait en émuler une sans trop de difficulté).

Et par liaison I°'C

Un dernier point a voir, c'est la communication de la carte Arduino vers l'écran par la liaison I?C. Cette liaison est utilisable avec
seulement 2 broches (une broche de donnée et une broche d'horloge) et nécessite l'utilisation de deuxbroches analogiques de
I'Arduino (broche 4 et 5).

Comme expliqué précédemment, je vous propose de travailler avec un écran dont seulement quatre broches de données sont
utilisées. Pour le bien de tous je vais présenter ici les deux montages, mais ne soyez pas surpris sidans les autres montages ou
les vidéos vous voyezseulement un des deux.

Lafficheur LCD utilise 6 & 10 broches de données ((D0 a D7) ou (D4 a D7) + RS + E) et deux d'alimentations (+5V et masse). La
plupart des écrans possédent aussiune entrée analogique pour régler le contraste des caractéres. Nous brancherons dessus un
potentiometre de 10 kOhms.

Les 10 broches de données peuvent étre placées sur n'importe quelles entrées/sorties numériques de I'Arduino. En effet, nous
indiquerons ensuite a la librairie LiquidCrystal qui est branché ou.

Le montage a 8 broches de données

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage

300/326

LCD

-2
oes
oes

DET

LED+

LED

ann

b
ELER Win
Possnr s r—
= RAST D12 [
— AREF o1l ""“_—I
— ek Arduino VI
-— N/C o =
. D8
g
=9
s 07
=
g D&
| o
= b5
=
5
B & Da
— A R
>
— A2 i o2
— A1 “_l R L
2 o
-_— A 5 DO e —
- AL SCL
GND rat
! 1
| W1
&
I = .-I

Le montage a 4 broches de données

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 301/326

o

LCD

I Wi
L

3 W Win

(e o
Pover
= 5T [RS
m— AR EF 11 "‘“"_I R
— orer Arduinog oo = £
— NI D 4]
w PR f— D&t -
a ™
g D7 e DRz =
Lai]
?:L o L]
<z o = pas
— a0 2 04 pas
_— m E— D86
— A2 E [i¥] DE7?
:g e
— A o D f— — LE[
= o
— R 0] — LD
— AL SO ==
SDE fp—

GHD

' Aol mece |_|HF_'I -0

Comme écrit plus tot, nous allons utiliser la librairie "LiquidCrystal". Pour l'intégrer c'est trés simple, il suffit de cliquer sur le
menu "Import Library" et d'aller chercher la bonne. Une ligne #include "LiquidCrystal.h" doit apparaitre en haut de la
page de code (les prochaines fois vous pourrez aussi taper cette ligne a la main directement, ¢a aura le méme effet). Ensuite, il ne
nous reste plus qu'a dire a notre carte Arduino ou est branché I'écran (sur quelles broches) et quelle est la taille de ce dernier
(nombre de lignes et de colonnes).

Nous allons donc commencer par déclarer un objet (c'est en fait une variable évoluée, plus de détails dans la prochaine partie)
lcd,detype LiquidCrystal et quisera global a notre projet. La déclaration de cette variable posséde plusieurs formes (lien
vers la doc.):

e LigquidCrystal (rs, enable, d0, dl1, d2, d3, d4, d5, d6, d7) ours estle numéro de la broche
ou est branché "RS", "enable" est la broche "E" et ainside suite pour les données.
e LiquidCrystal (rs, enable, d4, d5, d6, d7) (mémecommentaires que précédemment

Ensuite, dans le setup () ilnous faut démarrer l'écran en spécifiant son nombre de colonnes puis de lignes. Cela se fait grace a

www.siteduzero.com

http://arduino.cc/en/Reference/LiquidCrystalConstructor
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 302/326

la fonction begin (cols, rows).

Voiciun exemple complet de code correspondant aux deux branchements précédents (commentez la ligne qui ne vous concerne
pas):

Code : C

#include "LiquidCrystal.h" //ajout de la librairie

//Vérifier les broches !

LiquidCrystal led(11,10,9,8,7,6,5,4,3,2); //liaison 8 bits de
données

LigquidCrystal 1lcd(11,10,5,4,3,2); //liaison 4 bits de données

void setup ()
{

lcd.begin(16,2); //utilisation d'un écran 16 colonnes et 2
lignes

lcd.write ("Salut les ZerOs !M); //petit test pour vérifier que
tout marche

}

void loop () {}

@ Surtout ne mettez pas d'accents ! L'afficheur ne les accepte pas par défaut et affichera du grand n'importe quoia la
place.

Vous remarquez que j'ai rajouté une ligne dont je n'ai pas parlé encore. Je l'ai juste mise pour vérifier que tout fonctionne bien
avec votre écran, nous reviendrons dessus plus tard.

Sitout se passe bien, vous devriez obtenir I'écran suivant :

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 303/326

! Si jamais rien ne s'affiche, essayez de tourner votre potentiometre de contraste. Si cela ne marche toujours pas, vérifier
les bonnes attributions des broches (surtout sivous utilisez un shield).

Maintenant que nous maitrisons les subtilités concernant I'écran, nous allons pouvoir commencer a jouer avec... En avant !

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 304/326

Votre premier texte !

Cay est, on va pouvoir commencer a apprendre des trucks avec notre écran. Alors, au programme : afficher des variables, des
tableaux, déplacer le curseur, etc.
Apres toutes ces explications, vous serez devenu un pro du LCD, du moins du LCD alphanumérique. @

Aller, en route ! Aprés ¢a vous ferezun petit TP plutdt intéressant, notamment au niveau de l'utilisation pour l'affichage des
mesures sans avoir besoin d'un ordinateur. De plus, pensez au fait que vous pouvez vous aider des afficheurs pour déboguer
votre programme !

Vous vous rappelez comme je vous disais ily a longtemps "Les développeurs Arduino sont des gens sympas, ils font les choses
clairement et logiquement !" ? Eh bien ce constat ce reproduit (encore) pour la bibliothéque LiquidCrystal ! En effet, une fois que
votre écran LCD est bien paramétré, il nous suffira d'utiliser qu'une seule fonction pour afficher du texte !

Allezje vous laisse 10 secondes pour deviner le nomde la fonction que nous allons utiliser. Un indice, ¢a a un lien avec la voie
série...

C'est trouvé ?

Félicitations a tous ceux qui auraient dit print(). En effet, une fois de plus nous retrouvons une fonction print(), comme pour
l'objet Serial, pour envoyer du texte. Ainsi, pour saluer tous les zéros de la terre nous aurons juste a écrire :

Code : C

lcd.print ("Salut les ZerOs!");

et pour code complet avec les déclarations on obtient :

Code : C

#include <LiquidCrystal.h> //on inclut la librairie

// initialise 1'écran avec les bonnes broches
// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);
void setup () {
// set up the LCD's number of columns and rows:
lcd.begin(l6, 2);
lcd.print ("Salut les ZerOs!");
}

void loop () {
}
@ Mais c'est nul ton truc on affiche toujours au méme endroit, en haut a gauche !

Oui je sais, mais chaque chose en son temps, on s'occupera du positionnement du texte bientot, promis !

Afficher du texte c'est bien, mais afficher du contenu dynamique c'est mieux ! Nous allons maintenant voir comment afficher une
variable sur I'écran.

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 305/326

La encore, rien de difficile. Je ne vais donc pas faire un long discours pour vous dire qu'iln'y a qu'une seule fonction a retenir... le
suspens est terrible...

OUI évidemment cette fonction c'est print() | Décidément elle est vraiment tout-terrain (et rédacteur du tutoriel Arduino devient
un vrai boulot de feignant, je vais finir par me copier-coller a chaque fois !)

Allez zou, un petit code, une petite photo et en avant Guingamp !

Code : C

int mavariable = 42;
lcd.print (mavariable) ;

Bon vous aurez remarqué que notre code posséde une certaine faiblesse... On n'affiche au choixun texte ou un nombre, mais pas
les deuxen méme temps ! Nous allons donc voir maintenant une maniére d'y remédier.

La fonction solution

La solution se trouve dans les bases du langage C, grace a une fonction quis'appelle sprint£ () (aussiappelé "string
printf"). Les personnes qui ont fait du C doivent la connaitre, ou connaitre sa cousine "printf".

Cette fonction est un peu particuliére car elle ne prend pas un nombre d'argument fini. En effet, si vous voulez afficher 2 variables
vous ne lui donnerez pas autant d'arguments que pour en afficher 4 (ce qui parait logique d'une certaine maniere).

Pour utiliser cette derniére, il va falloir utiliser un tableau de char qui nous servira de buffer. Ce tableau sera celui dans lequel
nous allons écrire notre chaine de caractére. Une fois que nous aurons écrit dedans, il nous suffira de l'envoyer sur I'écran en
utilisant... print() !

Son fonctionnement

Comme dit rapidement plus tot, sprintf () n'a pas un nombre d'arguments fini. Cependant, elle en aura au minimum deux qui
sont le tableau de la chaine de caractére et une chaine a écrire. Un exemple simple serait d'écrire :

Code : C

char message[l6] = "";
sprintf (message,"J'ai 42 ans");

Au début, le tableau message ne contient rien. Apres la fonction sprintf (), il possédera le texte "J'ai 42 ans". Simple non ?

| Jlutilise un tableau de 16 cases car mon écran fait 16 caractéres de large au maximum, et donc inutile de gaspiller de la
-/ mémoire en prenant un tableau plus grand que nécessaire.

Nous allons maintenant voir comment changer mon age en le mettant en dynamique dans la chaine grace a une variable.

Pour cela, nous allons utiliser des marqueurs de format. Le plus connu est % d pour indiquer un nombre entier (nous verrons les
autres ensuite). Dans le contenu a écrire (le deuxiéme argument), nous placerons ces marqueurs a chaque endroit ot l'on voudra

mettre une variable. Nous pouvons en placer autant que nous voulons. Ensuite, il nous suffira de mettre dans le méme ordre que
les marqueurs les différentes variables en argument de sprintf (). Tout va étre plus clair avec un exemple !

Code : C

char message[l6] = "";
int nbA = 3;
int nbB = 5;

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 306/326

"

o\

sprintf (message, d + $d = %d", nbA, nbB, nbA+nbB);

Cela affichera :

Code : Console

Les marqueurs

Comme je vous le disais, il existe plusieurs marqueurs. Je vais vous présenter ceux qui vous serviront le plus, et différentes
astuces pour les utiliser a bon escient :

% d qui sera remplacé parun int (signé)

% s sera remplacé par une chaine (un tableau de char)
% u pour un entier non signé (similaire a %d)

% % pour afficher le symbole '%' @

Malheureusement, Arduino ne les supporte pas tous. En effet, le %f des float ne fonctionne pas. . Il vous faudra donc bricoler

sivous désirer l'afficher en entier (je vous laisse deviner comment).

Sijamais vous désirez forcer l'affichage d'un marqueur sur un certain nombre de caractéres, vous pouvez utiliser un indicateur de
taille de ce nombre entre le '%' et la lettre du marqueur. Par exemple, utiliser "%3d" forcera l'affichage du nombre en paramétre
(quel qu'il soit) sur trois caractéres. Ce paramétre prendra donc toujours autant de place sur I'écran (utile pour maitriser la
disposition des caractéres). Exemple :

Code : C

int agel = 42;

int age2 = 5;

char prenoml[10] = "Ben";

char prenom2[10] = "Luc";

char message([l6] = "";

sprintf (message, "%$s:%2d, $s:%2d", prenoml, agel, prenom2, age2);

N

A l'écran, on aura un texte tel que :

Code : Console

Ben:42,Luc: 5

On note l'espace avant le 5 grace au forcage de I'écriture de la variable sur 2 caractéres induit par %2d.

Consigne
Afin de conclure cette partie, je vous propose un petit exercice. Comme le titre l'indique, je vous propose de réaliser une petite

horloge. Bien entendu elle ne sera pas fiable du tout car nous n'avons aucun repére réel dans le temps, mais ¢a reste un bon
exercice.

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 307/326

L'objectif sera donc d'afficher le message suivant :
"Il est hh:mm:ss" avec 'hh' pour les heures, 'mm' pour les minutes et 'ss' pour les secondes.

Ca vous ira ? Ouais, enfin je vois pas pourquoi je pose la question puisque de toute maniére vous n'avez pas le choix !

Une derniére chose avant de commencer. Si vous tentez de faire plusieurs affichages successifs, le curseur ne se replacera pas et
votre écriture sera vite chaotique. Je vous donne donc rapidement une fonction qui vous permet de revenir a la position en haut
a gauche de l'écran : home () . Il vous suffira de faire un 1cd.home () pourreplacer le curseur en haut a gauche. Nous
reparlerons de la position curseur dans le chapitre suivant !

Solution

Je vais directement vous parachuter le code, sans vraiment d'explications car je pense l'avoir suffisamment comment¢ (et entre
nous l'exercice est sympa et pas trop dur). @

Secret (cliquez pour afficher)

Code : C

#include <LigquidCrystal.h> //on inclut la librairie

// initialise 1'écran avec les bonnes broches
// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);

int heures,minutes, secondes;
char message[l6] = "";

void setup ()

{
lcd.begin(1l6, 2); // régle la taille du LCD : 16 colonnes et 2

lignes

//changer les valeurs pour démarrer a 1'heure souhaitée !
heures = 0;

minutes = 0;

secondes = 0;

}

void loop ()
{

//on commence par gérer le temps qui passe...
if (secondes == 60) //une minutes est atteinte ?
{
secondes = 0; //on recompte a partir de 0
minutes++;

if (minutes == 60) //une heure est atteinte ?

minutes = 0;

heures++;
}
if (heures == 24) //une journée est atteinte ?
{

heures = 0;

}

//met le message dans la chaine a transmettre
sprintf (message, "Il est %$2d:%2d:%2d",heures,minutes, secondes) ;

lcd.home () ; //met le curseur en position (0;0) sur
1'écran

lcd.write (message) ; //envoil le message sur 1'écran

delay (1000) ; //attend une seconde

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 308/326

//une seconde s'écoule...
secondes+t+;

Bon, autant vous prévenir d'avance, ce morceau de chapitre ne sera pas digne du nomde "tutoriel". Malheureusement, pour se
déplacer sur I'écran (que ce soit le curseur ou du texte) il n'y a pas 36 solutions, juste quelques appels relativement simples a des
fonctions. Désolé d'avance pour le "pseudo-listing" de fonctions que je vais faire tout en essayant de le garder intéressant...

Les premicres fonctions que nous allons voir concernent I'écran dans son ensemble. Nous allons apprendre a enlever le texte de
I'écran mais le garder dans la mémoire pour le ré-afficher ensuite. En d'autres termes, vous allez pouvoir faire un mode "invisible"
ou le texte est bien stocké en mémoire mais pas affiché sur I'écran.

Les deux fonctions permettant ce genre d'action sont les suivantes :

e noDisplay () :fait disparaitre le texte
e display () :fait apparaitre le texte (s'il y en a évidemment)

Sivous tapez le code suivant, vous verrez le texte clignoter toutes les secondes :

Code : C

#include <LiquidCrystal.h> //on inclut la librairie

// initialise 1'écran avec les bonnes broches
// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);

void setup () {
// régle la taille du LCD
lcd.begin (16, 2);
lcd.print ("Hello World !'M);

}

void loop () {
lcd.noDisplay () ;
delay (500) ;
lcd.display () ;
delay (500) ;

}

Utile sivous voulez attirer l'attention de l'utilisateur !

Une autre fonction utile est celle vous permettant de nettoyer I'écran. Contrairement a la précédente, cette fonction va supprimer
le texte de maniére permanente. Pour le ré-afficher il faudra le renvoyer a l'afficheur. Cette fonction au nom évident est :
clear ().

Le code suivant vous permettra ainsi d'afficher un texte puis, au bout de 2 secondes, il disparaitra (pas de loop(), pas nécessaire)

Code : C

#include <LigquidCrystal.h> //on inclut la librairie

// initialise 1'écran avec les bonnes broches

// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);

void setup () {

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 309/326

// regle la taille du LCD
lcd.begin(l6, 2);

lcd.print ("Hello World !");
delay (2000) ;

lcd.clear();

Cette fonction est tres utile lorsque l'on fait des menus sur I'écran, pour pouvoir changer de page. Sion ne fait pas un clear (),
ilrisque d'ailleurs de subsister des caracteres de la page précédente. Ce n'est pas tres joli.

! Attention a ne pas appeler cette fonction plusieurs fois de suite, par exemple en la mettant dans la fonction 1oop (),
vous verrez le texte ne s'affichera que trés rapidement puis disparaitra et ainsi de suite.

Se déplacer sur l'écran

Voici maintenant d'autres fonctions que vous attendez certainement, celles permettant de déplacer le curseur sur I'écran. En
déplagant le curseur, vous pourrez écrire a n'importe quel endroit sur 'écran (attention cependant a ce qu'il y ait suffisamment de
place pour votre texte). @)

Nous allons commencer par quelque chose de facile que nous avons vu trés rapidement dans le chapitre précédent. Je parle bien
str de la fonction home () ! Souvenez-vous, cette fonction permet de replacer le curseur au début de I'écran.

@ Mais au fait, savez-vous comment est organis¢ le repére de I'écran ?

Clest assez simple, mais il faut étre vigilant quand méme.

Tout d'abord, sachez que les coordonnées s'expriment de la maniére suivante {_-1,-7 -y} & représente les abscisses, donc les pixels

horizontaux et Y les ordonnées, les pixels verticaux.

L'origine du repére sera logiquement le pixel le plus en haut a gauche (comme la lecture classique d'un livre, on commence en
haut a gauche) et a pour coordonnées ... (0,0) !

Eh oui, on ne commence pas aux pixels (1,1) mais bien (0,0). Quand on y réfléchit, c'est assez logique. Les caractéres sont rangés
dans des chaines de caractéres, donc des tableaux, qui euxsont adressés a partir de la case 0. Il parait donc au final logique que
les développeurs aient gardé une cohérence entre les deux.

Puisque nous commengons a 0, un écran de 16x2 caractéres pourra donc avoir comme coordonnées de 0a 15 pourretOou 1

pour .
Ceci étant dit, nous pouvons passer a la suite.

La prochaine fonction que nous allons voir prend directement en compte ce que je viens de vous dire. Cette fonction nommée
setCursor () vous permet de positionner le curseur sur I'écran. On pourra donc faire setCursor (0, 0) pourse placer en
haut a gauche (équivalent a la fonction "home()") et en faisant setCursor (15, 1) on se placera tout en bas a droite
(toujours pour un écran de 16x2 caractéres).

Un exemple :

Code : C

#include <LiquidCrystal.h>

// initialise 1'écran avec les bonnes broches
// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);

void setup ()

{
lcd.begin (16, 2);

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 310/326

lcd.setCursor (2,1); //place le curseur aux coordonnées
(2,1)
lcd.print ("Texte centré"); //texte centré sur la ligne 2

}

Animer le curseur

Tout comme nous pouvons faire disparaitre le texte, nous pouvons aussi faire disparaitre le curseur (comportement par défaut).
La fonction noCursor () va donc l'effacer. La fonction antagoniste cursor () de son coté permettra de l'afficher (vous verrez
alors un petit trait en bas du carré (5*8 pixels) ou il est placé, comme lorsque vous appuyez sur la touche Insér. de votre clavier).

Une dernicre chose sympa a faire avec le curseur est de le faire clignoter. En anglais clignoter se dit "blink" et donc tout
logiquement la fonction a appeler pour activer le clignotement est bl ink (). Vous verrez alors le curseur remplir le carré
concerné en blanc puis s'effacer (juste le trait) et revenir. S'il y a un caractére en dessous, vous verrez alternativement un carré
tout blanc puis le caractére. Pour désactiver le clignotement il suffit de faire appel a la fonction noBlink ().

Code : C

#include <LiquidCrystal.h>

// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A voUus !
LiquidCrystal 1cd(8,9,4,5,6,7);

void setup ()

{
lcd.begin (16, 2);

lcd.home () ; //place le curseur aux coordonnées (0,0)
lcd.setCursor () ; //affiche le curseur
lcd.blink () ; //et le fait clignoter

lcd.print ("Curseur clignotant"); //texte centré sur la ligne 2

Sivous faites appel a blink() puis a noCursor() le carré blanc continuera de clignoter. En revanche, quand le curseur est
dans sa phase "éteinte" vous ne verrez plus le trait du bas.

Nous allons maintenant nous amuser avec le texte. Ne vous attendez pas non plus a des miracles, il s'agira juste de déplacer le
texte automatiquement ou non.

Déplacer le texte a la main

Pour commencer, nous allons déplacer le texte manuellement, vers la droite ou vers la gauche. N'essayez pas de produire
Pexpérience avec votre main, ce n'est pas un écran tactile, hein !

Le comportement est simple a comprendre. Aprés avoir écrit du texte sur 'écran, on peut faire appel aux fonctions
scrollDisplayRight () et scrollDisplayLeft () vous pourrezdéplacer le texte d'un carré vers la droite ou vers la
gauche. S'ily a du texte sur chacune des lignes avant de faire appel aux fonctions, c'est le texte de chaque ligne qui sera déplacé
par la fonction.

Utilisez deux petits boutons poussoirs pour utiliser le code suivant. Vous pourrez déplacer le texte en appuyant sur chacun des
poussoirs !

Code : C

#include <LiquidCrystal.h> //on inclut la librairie

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 311/326

//les branchements
const int boutonGauche = 11; //le bouton de gauche
const int boutonDroite = 12; //le bouton de droite

// initialise 1'écran avec les bonnes broches
// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);

void setup () {
//réglage des entrées/sorties
pinMode (boutonGauche, INPUT) ;
pinMode (boutonDroite, INPUT) ;

//on attache des fonctions aux deux interruptions externes (les
boutons)

attachInterrupt (0, aDroite, RISING) ;

attachInterrupt (1, aGauche, RISING)

//paramétrage du LCD
lcd.begin (16, 2); // régle la taille du LCD
lcd.print ("Hello les Zeros !");

}

void loop () {
//pas besoin de loop pour le moment

}

//fonction appelée par 1'interruption du premier bouton
void aGauche () {

lcd.scrollDisplayLeft(); //on va a gauche !
}

//fonction appelé par 1'interruption du deuxieme bouton
void aDroite () {

lcd.scrollDisplayRight(); //on va a droite !
}

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 312/326

Déplacer le texte automatiquement

De temps en temps, il peut étre utile d'écrire toujours sur le méme pixel et de faire en sorte que le texte se décale tout seul (pour
faire des effets zolis par exemple). @ Un couple de fonctions va nous aider dans cette tdche. La premicre sert a définir la

direction du défilement. Elle s'appelle leftToRight () pouraller de la gauche vers la droite et rightToLeft () pour l'autre
sens. Ensuite, il suffit d'activer (ou pas sivous voulez arréter 'effet) avec la fonction autoScroll () (et noAutoScroll ()
pour l'arréter).

Pour mieux voir cet effet, je vous propose d'essayer le code qui suit. Vous verrez ainsi les chiffres de 0a 9 apparaitre et se
"pousser"” les uns apres les autres :

Code : C

#include <LiquidCrystal.h> //on inclut la librairie

// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);

void setup ()
{
lcd.begin (16, 2);
lcd.setCursor (14,0);
lcd.leftToRight (); //indique que le texte doit étre déplacer
vers la gauche
lcd.autoscroll () ; //rend automatique ce déplacement
led.print ("{");
int i=0;
for (i=0; i<10; i++)
{
lcd.print (i)
delay (1000) ;
}
lcd.print ("}");

Dernicre partie avant la pratique, on s'accroche vous serez bientot incollable sur les écrans LCD ! En plus réjouissez-vous je
vous ai gardé un petit truc sympa pour la fin. En effet, dans ce dernier morceau toute votre ame créatrice va pouvoir s'exprimer !
Nous allons créer des caractéres !

Principe de la création
Créer un caractére n'est pas trés difficile, il suffit d'avoir un peu d'imagination. Sur I'écran les pixels sont en réalités divisés en
grille de 5x8 (5 en largeur et 8 en hauteur). C'est parce que le contrdleur de I'écran connait l'alphabet qu'il peut dessiner sur ces
petites grilles les caractéres et les chiffres.
Comme je viens de le dire, les caractéres sont une grille de 5x8. Cette grille sera symbolisée en mémoire par un tableau de huit

octets (type byte). Les 5 bits de poids faible de chaque octet représenteront une ligne du nouveau caractére. Pour faire simple,
prenons un exemple. Nous allons dessiner un smiley, avec ses deuxyeuxet sa bouche pour avoir le rendu suivant :

Ce dessin se traduira en mémoire par un tableau d'octet que l'on pourra coder de la maniére suivante :

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 313/326

Code : C

Il
—

byte smiley[8]
BOOOOO,
B10001,
BOOOOO,
BOOOOO,
B10001,
BO1110,
BOOOOO,
B0O0O0OOO

La lettre 'B' avant I'écriture des octets veut dire "Je t'écris la valeur en binaire". Cela nous permet d'avoir un rendu plus facile et
rapide.

b TN AN IR AP

Oh le joli smiley !

L'envoyer a l'écran et l'utiliser

Une fois que votre caractere est créé, il faut lenvoyer a I'écran, pour que ce demier puisse le connaitre, avant toute
communication avec I'écran (oui ouiavant le begin ()). La fonction pour apprendre notre caractere a I'écran se nomme
createChar () signifiant "créer caractere". Cette fonction prend deux parametres : "l'adresse" du caractére dans la mémoire
de I'écran (de 0 a 7) et le tableau de byte représentant le caractére.

Ensuite, 'étape de départ de communication avec l'écran peut-Etre faite (le begin). Ensuite, si vous voulez écrire ce nouveau
caractére sur votre bel écran, nous allons utiliser une nouvelle (la demiere fonction) qui s'appelle write (). En parametre sera
passé un int représentant le numéro (adresse) du caractere que l'on veut afficher. Cependant, il y a 1a une faille dans le code
Arduino. En effet, la fonction write () existe aussidans une librairie standard d'Arduino et prend un pointeur sur un char. Le
seul moyen de les différencier pour le compilateur sera donc de regarder le paramétre de la fonction pour savoir ce que vous
voulez faire. Dans notre cas, il faut passerun int. On va donc forcer (on dit "caster") le paramétre dans le type "uint8 t" en
écrivant la fonction de la maniére suivante :write (uint8 t param).

Le code complet sera ainsi le suivant :
Code : C

#include <LiquidCrystal.h> //on inclut la librairie

// initialise 1'écran avec les bonnes broches

// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A vous !
LiquidCrystal 1cd(8,9,4,5,6,7);

//notre nouveau caracteére

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 314/326

byte smiley[8] = {
B0O00OO,
B10001,
BO0O0OOO,
B0O00O0O,
B10001,
BO1110,
BO00OOO,
Y

void setup ()

{
lcd.createChar (0, smiley); //apprend le caractére a 1'écran LCD
lcd.begin (16, 2);
led.write((uint8 t) 0); //affiche le caractére de 1'adresse 0

}

Désormais, vous savez l'essentiel sur les LCD alphanumériques, vous étes donc aptes pour passer au TP. ®

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 315/326

[TP] Supervision

Chers zéros, savez-vous qu'il est toujours aussi difficile de faire une introduction et une conclusion pour chaque chapitre ? Clest
pourquoi je n'ai choisiici que de dire ceci : amusez-vous !

Dans ce TP, on se propose de mettre en place un systéme de supervision, comme on pourrait en retrouver dans un milieu
industriel (en plus simple ici bien sur) ou dans d'autres applications.

Le but sera d'afficher des informations sur I'écran LCD en fonction d'événements qui se passent dans le milieu extérieur. Ce
monde extérieur sera représenté par les composants suivants :

e Deuxboutons, qui pourraient représenter par exemple deux barrieres infrarouges donc le signal passe de 1 a 0 lorsque un
objet passe devant.

e Deuxpotentiometres. Un sert de "consigne" et est réglé par l'utilisateur. L'autre représentera un capteur (mais comme
vous n'avez pas forcément lu la partie sur les capteurs (et qu'elle n'est pas rédigée a I'heure de la validation de cette
partie), ce capteur sera représenté par un autre potentiometre). A titre d'exemple, sur la vidéo a la suite vous verrezun
potentiometre rotatif qui représentera la consigne et un autre sous forme de glissiére qui sera le capteur.

e Enfin, une LED rouge nous permettra de faire une alarme visuelle. Elle sera normalement éteinte mais sila valeur du
capteur dépasse celle de la consigne alors elle s'allumera.

Comportement de l'écran
L'écran que jlutilise ne propose que 2 lignes et 16 colonnes. Il n'est donc pas possible d'afficher toute les informations de manicre
lisible en méme temps. On se propose donc de faire un affichage alterné entre deuxinterface. Chaque interface sera affiché
pendant cing secondes a tour de rdle.

La premiere affichera I'état des boutons. On pourra par exemple lire :

Code : Autre

Bouton G : ON
Bouton D : OFF

La seconde interface affichera la valeur de la consigne et celle du capteur. On aura par exemple :

Code : Autre

Consigne : 287
Capteur : 115

(Surlavidéo vous verrez "gauche / droite" pour symboliser les deux potentiométres, chacun fait comme il veut). @)

Enfin, bien que l'information "consigne/capteur" ne s'affiche que toutes les 5 secondes, l'alarme (la LED rouge), elle, doit-étre
visible a tout moment si la valeur du capteur dépasse celle de la consigne. En effet, imaginez que cette alarme représentera une
pression trop élevée, ce serait dommage que tout explose a cause d'un affichage 5 secondes sur 10!

Je pense avoir fait le tour de mes attentes !
Je vous souhaite un bon courage, prenez votre temps, faites un beau schéma/montage/code et a bientot pour la correction !

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 316/326

Vous en avez I'habitude maintenant, je vais vous présenter le schéma puis ensuite le code. Pour le schéma, je n'ai pas des milliers
de commentaires a faire. Parmi les choses sur lesquelles il faut étre attentif se trouvent :

e Des condensateurs de filtrage pour éviter les rebonds parasites créés par les boutons
e Mettre les potentiométres sur des entrées analogiques
e Brancher la LED dans le bon sens et ne pas oublier sa résistance de limitation de courant

Et en cas de doute, voici le schéma (qui est un peu fouillis par endroit, j'en suis désol¢) !

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage

317/326

A
Lk
ey

[111 (_/ [|

RET

AREF

3

Fdu) Topany

N ¥in
Prowes
Arduino
el

EE i i | l_| t| |

RS

R

e

D

[EERS

B3

[Rdis

£

Dad

T

LED=

LED-

an

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 318/326

LR
W

FTREFEFYyFEEEY

I TR A I] CR I]
L O L
L B L
A S I e L
- . e e - LA B B

Le code

La encore, je vais reprendre le méme schéma de fonctionnement que d'habitude en vous présentant tout d'abord les variables
globales utilisées, puis les initialisations pour continuer avec quelques fonctions utiles et la boucle principale.

Les variables utilisées

Dans ce TP, beaucoup de variables vont étre déclarées. En effet, il en faut déja 5 pour les entrées/sorties (2 boutons, 2
potentiométres, 1 LED), jlutilise aussi deux tableaux pour contenir et préparer les messages a afficher sur la premiére et deuxiéme
ligne. Enfin, j'en utilise 4 pour contenir les mesures faites et 4 autres servant de mémoire pour ces mesures. Ah et joubliais, il me
faut aussiune variable contenant le temps écoulé et une servant a savoir sur quel "interface" nous sommes en train d'écrire. Voici
un petit tableau résumant tout cela ainsi que le type des variables.

Secret (cliquez pour afficher)

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage

319/326

Nom Type Description
boutonGauche const int Broche du bouton de gauche
boutonDroite const int Broche du bouton de droite
potentiometreGauche | const int Broche du potar "consigne"
potentiometreDroite | const int Broche du potar "alarme"
ledAlarme const int Broche de la LED d'alarme
messageHaut[16] char Tableau représentant la ligne du haut
messageBas[16] char Tableau représentant la ligne du bas
etatGauche int Etat du bouton de gauche
etatDroite int Etat du bouton de droite
niveauGauche int Conversion du potar de gauche
niveauDroite int Conversion du potar de droite
etatGauche old int Mémoire de I'état du bouton de gauche
etatDroite old int Mémoire de I'état du bouton de droite
niveauGauche old int Mémoire de la conversion du potar de gauche
niveauDroite old int Mémoire de la conversion du potar de droite
temps unsigned long | Pour mémoriser le temps écoulé
ecran boolean Pour savoir sur quelle interface on écrit

Le setup

Maintenant que les présentations sont faites, nous allons passer a toutes les initialisations. Le setup n'aura que peu de choses a
faire puisqu'il suffira de régler les broches en entrées/sorties et de mettre en marche I'écran LCD.

Secret (cliquez pour afficher)

Code : C

void setup () {

//réglage des entrées/sorties
pinMode (boutonGauche, INPUT) ;
pinMode (boutonDroite, INPUT) ;
pinMode (ledAlarme, OUTPUT) ;

//parametrage du LCD
// régle la taille du LCD

lcd.begin (16, 2);
//pas de clignotement
//pas de curseur

//pas de défilement

lcd.noBlink () ;

lcd.noCursor () ;
lcd.noAutoscroll () ;

Quelques fonctions utiles

Afin de bien séparer notre code en morceaux logiques, nous allons écrire plusieurs fonctions, qui ont toutes un role particulier.
La premicre d'entre toute sera celle chargée de faire le relevé des valeurs. Son objectif sera de faire les conversions analogiques

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 320/326

et de regarder I'état des entrées numériques. Elle stockera bien entendu chacune des mesures dans la variable concernée.

Secret (cliquez pour afficher)

Code :

C

void recupererDonnees ()

{

//efface les anciens avec les "nouveaux anciens"
etatGauche old = etatGauche;

etatDroite old = etatDroite;

niveauGauche old = niveauGauche;
niveauDroite old = niveauDroite;

//effectue les mesures

etatGauche = digitalRead (boutonGauche) ;
etatDroite digitalRead (boutonDroite) ;
niveauGauche = analogRead (potentiometreGauche) ;
niveauDroite analogRead (potentiometreDroite) ;

delay(2); //pour s'assurer que les conversions analogiques sont

terminées avant de passer a la suite

}

Ensuite, deux fonctions vont nous permettre de déterminer si ouiou non il faut mettre a jour I'écran. En effet, afin d'éviter un
phénomene de scintillement qui se produit si on envoi des données sans arrét, on préfere écrire sur I'écran que sinécessaire.
Pour décider sil'on doit mettre a jour les "phrases"” concernant les boutons, il suffit de vérifier 'état "ancien" et I'état courant de
chaque bouton. SiI'état est différent, notre fonction renvoie t rue, sinon elle renvoie false.

Une méme fonction sera codée pour les valeurs analogiques. Cependant, comme les valeurs lues par le convertisseur de la carte
Arduino ne sont pas toujours tres stable (je rappel que le convertisseur offre plus ou moins deuxbits de précision, soit 20mV de
précision otale), on va faire une petite opération. Cette opération consiste a regarder si la valeur absolue de la différence entre la
valeur courante et la valeur ancienne est supérieure a deuxunités. Sic'est le cas on renvoi t rue sinon false.

Secret (cliquez pour afficher)

Code

:C

boolean boutonsChanged ()

{

}

//si un bouton a changé d'état

if (etatGauche old != etatGauche || etatDroite old != etatDroite)
return true;

else
return false;

boolean potarChanged ()

{

//si un potentiométre affiche une différence entre ces deux

valeurs de plus de 2 unités, alors on met a jour

if (abs (niveauGauche old-niveauGauche) > 2 ||

abs (niveauDroite old-niveauDroite) > 2)

return true;
else
return false;

Une derniére fonction nous servira a faire la mise a jour de I'écran. Elle va préparer les deux chaines de caractéres (celle du haut et
celle du bas) et va ensuite les envoyer successivement sur I'écran. Pour écrire dans les chaines, on vérifiera la valeur de la
variable ecran pour savoir sion doit écrire les valeurs des potentiométres ou celles des boutons. L'envoia I'écran se fait

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 321/326

simplement avec print () comme vu antérieurement. On notera le clear () de I'écran avant de faire les mises a jour. En effet,
sans cela les valeurs pourrait se chevaucher (essayer d'écrire un OFF puis un ON, sans clear(), cela vous fera un "ONF" a la fin).

Secret (cliquez pour afficher)

Code : C

void updateEcran ()

{
if (ecran)

{

//prépare les chaines a mettre sur 1'écran : boutons
if (etatGauche)

sprintf (messageHaut, "Bouton G : ON");
else

sprintf (messageHaut, "Bouton G : OFF");
if (etatDroite)
sprintf (messageBas, "Bouton D : ON");
else
sprintf (messageBas, "Bouton D : OFFE");
}
else

{

//prépare les chaines a mettre sur 1'écran : potentiométres

sprintf (messageHaut, "gauche = %4d", niveauGauche);
sprintf (messageBas, "droite = %4d", niveauDroite):;

}

//on envoie le texte
lcd.clear () ;
lcd.setCursor (0,0);
lcd.print (messageHaut) ;
lcd.setCursor (0,1);
lcd.print (messageBas) ;

La boucle principale

Nous voici enfin au ceeur du programme, la boucle principale. Cette derniére est relativement 1égére, grace aux fonctions
permettant de repartir le code en unité logique. La boucle principale n'a plus qu'a les utiliser a bon escient et dans le bon ordre (
@) pour faire son travail

Dans l'ordre il nous faudra donc :

Récupérer toutes les données (faire les conversions etc...)
Selon l'interface courante, afficher soit les états des boutons soit les valeurs des potentiométres siils/elles ont

changé(e)s
Tester les valeurs des potentiométres pour déclencher I'alarme ou non
Enfin, si5 secondes se sont écoulées, changer d'interface et mettre a jour I'écran

Simple non ? On ne le dira jamais assez, un code bien séparé est toujours plus facile & comprendre et a retoucher si nécessaire !

Aller, comme vous étes sages, voici le code de cette boucle (qui va de paire avec les fonctions expliquées précédemment) :

Secret (cliquez pour afficher)

Code : C

void loop () {

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 5 :

[Pratique] L'affichage

322/326

recupererDonnees () ; //commence par récupérer les données des
boutons et capteurs

if (ecran) //quel écran affiche t'on ? (bouton ou potentiometre
)
{

if (boutonsChanged()) //si un bouton a changé d'état
updateEcran () ;
}
else
{
if (potarChanged()) //si un potentiométre a changé d'état
updateEcran () ;

}

if (niveauDroite > niveauGauche)
digitalWrite(ledAlarme, LOW); //RAPPEL : piloté a 1'état bas
donc on allume !
else
digitalWrite (ledAlarme, HIGH) ;

if(millis() - temps > 5000) //si ¢ca fait 5s qu'on affiche la
méme donnée
{
ecran = ~ecran;
lcd.clear () ;
updateEcran() ;
temps = millis();

Programme complet

Voici enfin le code complet. Vous pourrez le copier/coller et 'essayer pour comparer si vous voulez. Attention cependant a
déclarer les bonnes broches en fonction de votre montage (notamment pour le LCD).

Secret (cliquez pour afficher)

Code : C

#include <LiquidCrystal.h> //on inclut la librairie

//les branchements
const int boutonGauche

11; //le bouton de gauche

const int boutonDroite = 12; //le bouton de droite

const int potentiometreGauche = 0; //le potentiometre de gauche
sur 1'entrée analogique 0

const int potentiometreDroite = 1; //le potentioméetre de droite

sur 1'entrée analogique 1
const int ledAlarme = 2; //la LED est branché sur la sortie 2

// initialise 1'écran avec les bonne broche
// ATTENTION, REMPLACER LES NOMBRES PAR VOS BRANCHEMENTS A VOUS
LiquidCrystal 1cd(8,9,4,5,6,7);

char messageHaut[l6] = ""; //Message sur la ligne du dessus
char messageBas[l6] = ""; //Message sur la ligne du dessous
unsigned long temps = 0; //pour garder une trace du temps qui
s'écoule et gérer les séquences

boolean ecran = LOW; //pour savoir si on affiche les boutons ou

les conversions

int etatGauche = LOW; //état du bouton de gauche

www.siteduzero.com

http://sciences.siteduzero.com/tutoriel-3-515602-arduino-pour-bien-commencer-en-electronique-et-en-programmation.html?pdf=1&all=1#
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage

323/326

int etatDroite LOW; //état du bouton de droite
int niveauGauche = 0; //conversion du potentiométre de gauche
int niveauDroite = 0; //conversion du potentiometre de droite

//les memes variables mais "old" servant de mémolire pour
constater un changement

int etatGauche old = LOW; //état du bouton de gauche

int etatDroite old = LOW; //état du bouton de droite

int niveauGaucHe_old = 0; //conversion du potentiometre de gauche
0; //conversion du potentiometre de droite

int niveauDroite old

void setup () {
//réglage des entrées/sorties
pinMode (boutonGauche, INPUT) ;
pinMode (boutonDroite, INPUT) ;
pinMode (ledAlarme, OUTPUT) ;

//paramétrage du LCD
lcd.begin(l6, 2); // régle la taille du LCD

lcd.noBlink(); //pas de clignotement
lcd.noCursor(); //pas de curseur
lcd.noAutoscroll(); //pas de défilement

}
void loop () {

recupererDonnees () ; //commence par récupérer les données des
boutons et capteurs

if (ecran) //quel écran affiche t'on ? (bouton ou potentiometre
2)
{

if (boutonsChanged()) //si un bouton a changé d'état
updateEcran() ;
}
else
{
if (potarChanged()) //si un potentiométre a changé d'état
updateEcran () ;

}

if (niveauDroite > niveauGauche)
digitalWrite (ledAlarme, LOW); //RAPPEL : piloté a 1'état bas
donc on allume !
else
digitalWrite (ledAlarme, HIGH) ;

if(millis() - temps > 5000) //si ca fait 5s qu'on affiche la
méme donnée
{
ecran = ~ecran;
lcd.clear () ;
updateEcran () ;
temps = millis () ;

void recupererDonnees ()
{
//efface les anciens avec les "nouveaux anciens"”
etatGauche old = etatGauche;
etatDroite old = etatDroite;
niveauGauche old = niveauGauche;
niveauDroite old = niveauDroite;

www.siteduzero.com

http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 324/326

etatGauche = digitalRead (boutonGauche) ;
etatDroite = digitalRead (boutonDroite);
niveauGauche = analogRead (potentiometreGauche) ;
niveauDroite = analogRead (potentiometreDroite);

delay(l); //pour s'assurer que les conversions analogiques sont
terminées avant de passer a la suite

}

boolean boutonsChanged ()

{
if (etatGauche old != etatGauche || etatDroite old != etatDroite)

return true;
else
return false;

}

boolean potarChanged ()
{

//si un potentiometre affiche une différence entre ces deux
valeurs de plus de 2 unités, alors on met a jour
if (abs (niveauGauche old-niveauGauche) > 2 ||
abs (niveauDroite old-niveauDroite) > 2)
return true;
else
return false;

}

void updateEcran ()
{
if (ecran)
{
//prépare les chaines a mettre sur 1'écran
if (etatGauche)
sprintf (messageHaut, "Bouton G : ON");
else
sprintf (messageHaut, "Bouton G : OFF");
if (etatDroite)
sprintf (messageBas, "Bouton D : ON");
else
sprintf (messageBas, "Bouton D : OFF");
}
else

{

//prépare les chaines a mettre sur 1'écran

sprintf (messageHaut, "gauche = %$4d", niveauGauche);
sprintf (messageBas, "droite = %4d", niveauDroite):;

}

//on envoie le texte
lcd.clear () ;
lcd.setCursor (0,0);
lcd.print (messageHaut) ;
lcd.setCursor (0,1);
lcd.print (messageBas) ;

Que diriez-vous sije vous proposais d'utiliser des écrans LCD graphique ? Mmm ?

Ce cours n'en est qu'a ses débuts, il y a encore plein de chapitres en préparation. Soyez patient, les mises a jour se font
régulierement. @

Pour connaitre I'avancement du cours, cliquez-ici.

En tous cas jespere qu'il vous a plu et qu'il vous a donner envie de vous mettre a Arduino pour réaliser vos projets les plus fous

www.siteduzero.com

http://sciences.siteduzero.com/forum-83-782150-p1-big-tuto-arduino-electronique-et-programmation.html#r6489629
http://www.siteduzero.com

Partie 5 : [Pratique] L'affichage 325/326

en toute facilité ! Je vous invite a laisser des commentaires sur les chapitres que vous avez lu, on essaye de prendre en compte
vos messages afin de rendre le cours encore plus abouti qu'il ne l'est déja.

Merci a tous et a Xababafr pour avoir soutenu le cours dés ses débuts et les corrections orthographiques et les quelques images
qu'il a apportées au cours !

Vous avez des questions ? Des commentaires ? Des suggestions ?
Alors postez un message ici : forum du cours Arduino.

ke

Vous avez besoin d'aide pour un projet ? Besoin de conseils ?
Alors lisez les regles avant de poster sur le forum.

@ Usez des forums qui sont 1a pour vous aider et ne m'envoyez pas de MP je Il'y l'épO ndrai plllS lorsqu'il
s'agira de demande d'aide ou de conseil. Pensez a tous ceux qui auront leur réponse grice a vos questions !

Bonne continuation ! @

www.siteduzero.com

http://www.siteduzero.com/membres-294-183446.html
http://sciences.siteduzero.com/forum-83-673015-p1-big-tuto-arduino-electronique-et-programmation.html#r6489629
http://sciences.siteduzero.com/forum-83-770779-p1-regles-du-forum-electronique.html
http://sciences.siteduzero.com/forum-81-565-electronique.html
http://www.siteduzero.com

	Sommaire
	Lire aussi
	 Arduino pour bien commencer en électronique et en programmation
	Plan du cours
	Apprentissage des bases
	Notions en robotique et en domotique
	Les écrans LCD
	Interface Homme-Machine
	Internet
	Les annexes

	Objectif du cours

	Partie 1 : [Théorie] Découverte de l'Arduino
	Présentation
	Présentation d'Arduino
	Qu'est ce que c'est ?
	Le but et l'utilité
	Applications

	Les bonnes raisons de choisir Arduino
	Le prix
	La liberté
	La compatibilité
	La communauté

	Les outils Arduino
	Le matériel
	Le logiciel

	Acheter une carte
	Les fabricants
	Les types de cartes
	Les différentes cartes
	Où acheter ?

	Listes d'achat
	Partie 1 : [Théorie] Découverte de l'Arduino
	Partie 2 : [Pratique] Gestion des entrées / sorties
	Partie 3 : [Pratique] Communication par la liaison série
	Partie 4 : [Pratique] Les grandeurs analogiques
	Partie 5 : * [Pratique] Les capteurs
	Partie 6 : * [Pratique] Les moteurs
	Partie 7 : [Pratique] L'affichage
	Partie 8 : * [Théorie] Processing et Arduino
	Partie 9 : * [Théorie] Arduino et internet

	Liste Globale !
	Les revendeurs
	Les kits

	Quelques bases élémentaires
	L'électronique
	La source d'énergie

	Le courant électrique
	Charges électriques
	Conductibilité des matériaux
	Sens du courant
	Intensité du courant

	Tension
	Notation et unité
	La différence de potentiel

	La masse
	Notion de référentiel
	Qu'est ce que c'est ?
	Représentation et notation
	Une référence arbitraire

	La résistance
	Présentation
	Symbole
	Loi d'ohm
	Unité
	Le code couleur

	Un outil formidable : la BreadBoard
	Principe de la breadboard

	La programmation
	Qu'est-ce qu'un programme
	Créer un programme informatique
	Le compilateur

	La programmation en électronique
	Comment programmer de l'électronique ?
	Le microcontrôleur
	Composition des éléments internes d'un micro-contrôleur
	Fonctionnement

	Les bases du comptage (2,10,16...)
	Les bases du de comptage
	Cas simple, la base 10
	Cas informatique, la base 2 et la base 16
	Les notations

	Conversions
	Décimale <-> Binaire
	Binaire <-> Hexadécimal
	Décimal <-> Hexadécimal
	Méthode rapide

	Le logiciel
	Installation
	Téléchargement
	Sous Windows
	Mac os
	Sous Linux

	Interface du logiciel
	Lancement du logiciel
	Présentation du logiciel
	Correspondance

	Approche et utilisation du logiciel
	Le menu File
	Les boutons

	Le matériel
	Présentation de la carte
	Constitution de la carte
	Le micro-contrôleur
	Alimentation
	Visualisation
	La connectique

	Installation
	Sous Windows
	Tester son matériel
	1ère étape : ouvrir un programme
	2e étape
	Dernière étape

	Le langage Arduino (1/2)
	La syntaxe du langage
	Le code minimal
	La fonction
	Les instructions
	Les points virgules
	Les accolades
	Les commentaires
	Les accents

	Les variables
	Une variable, qu'est ce que c'est ?
	Le nom d'une variable
	Définir une variable
	Les variables booléennes

	Les opérations "simples"
	L'addition
	La soustraction
	La multiplication
	La division
	Le modulo

	Quelques opérations bien pratiques
	L'incrémentation
	La décrémentation
	Les opérations composées

	L'opération de bascule (ou "inversion d'état")
	Les conditions
	Qu'est-ce qu'une condition
	Quelques symboles

	If...else
	if
	else
	else if

	Les opérateurs logiques
	ET
	OU
	NON

	Switch
	La condition ternaire ou condensée

	Le langage Arduino (2/2)
	Les boucles
	Qu'est-ce qu'une boucle ?

	La boucle while
	Comment lire ce code ?
	Construction d'une boucle while
	Un exemple

	La boucle do...while
	Concaténation

	La boucle for
	Fonctionnement
	A retenir

	La boucle infinie
	Les fonctions
	Qu'est-ce qu'une fonction ?

	Fabriquer une fonction
	Nom de la fonction
	Les types et les paramètres
	Les paramètres

	Les fonctions vides
	Les fonctions "typées"
	Comment créer une fonction typée ?

	Les fonctions avec paramètres
	Les tableaux
	Un tableau en programmation
	A quoi ça sert ?

	Déclarer un tableau
	Accéder et modifier une case du tableau
	Initialiser un tableau
	Exemple de traitement
	La note maximale
	Calcul de moyenne

	Partie 2 : [Pratique] Gestion des entrées / sorties
	Notre premier programme !
	La diode électroluminescente
	DEL / LED ?
	Symbole
	Astuce mnémotechnique

	Fonctionnement
	Polarisation directe
	Polarisation inverse
	Utilisation
	La tension maximum directe
	La tension maximum inverse
	Le courant de passage

	Par quoi on commence ?
	Le but
	Objectif
	Matériel

	Réalisation
	Créer un nouveau projet
	Le code minimal

	Créer le programme : les bons outils !
	La référence Arduino
	Qu'est ce que c'est ?
	Comment l'utiliser ?

	Allumer notre LED
	1ère étape
	2e étape

	Introduire le temps
	Comment faire ?
	Trouver la commande...
	Utiliser la commande
	Mettre en pratique : faire clignoter une LED

	Faire clignoter un groupe de LED
	Le matériel et les schémas
	Le programme
	Le programme final

	Réaliser un chenillard
	Le but du programme
	Organigramme
	Le programme

	Fonction millis()
	Les limites de la fonction delay()
	Découvrons et utilisons millis()

	[TP] Feux de signalisation routière
	Préparation
	Le matériel
	Le schéma

	Énoncé de l'exercice
	Le but
	Le temps de la séquence
	Par où commencer ?
	C'est parti !

	Correction !
	Fini !
	L'organigramme

	La correction, enfin !
	La fonction setup
	Le code principal

	Un simple bouton
	Qu'est-ce qu'un bouton
	Mécanique du bouton
	Le bouton poussoir normalement ouvert (NO)
	Le bouton poussoir normalement fermé (NF)
	Les interrupteurs

	L'électronique du bouton
	Symbole
	Tension et courant

	Contrainte pour les montages
	Filtrer les rebonds
	Schéma résumé

	Les pull-ups internes
	Schéma résumé

	Récupérer l'appui du bouton
	Montage de base
	Paramétrer la carte
	Récupérer l'état du bouton
	Test simple
	But
	Correction

	Interagir avec les LEDs
	Montage à faire
	Objectif : Barregraphe à LED
	Cahier des charges

	Correction
	Initialisation
	Détection des différences appuyé/relâché
	Détection du changement d'état
	L'affichage

	Les interruptions matérielles
	Principe
	Mise en place
	Créer une nouvelle interruption

	Mise en garde

	Afficheurs 7 segments
	Matériel
	Première approche : côté électronique
	Un peu (beaucoup) d'électronique
	Des LED, encore des LED
	Cathode commune ou Anode commune
	Choix de l'afficheur

	Branchement "complet" de l'afficheur
	Présentation du boîtier
	Exemple
	Seulement 7 segments mais plein de caractère(s) !

	Afficher son premier chiffre !
	Schéma de connexion
	Le programme
	Techniques d'affichage
	Les décodeurs "4 bits -> 7 segments"
	Décodeur BCD -> 7 segments
	Principe du décodeur
	Choix du décodeur
	Fonctionnement

	L'affichage par alternance
	Utilisation du décodeur BCD
	Initialisation
	Programme principal
	Fonction d'affichage

	Utiliser plusieurs afficheurs
	Problématique

	Un peu d'électronique...
	Le transistor bipolaire : présentation
	Fonctionnement en commutation du transistor bipolaire
	Utilisation générale
	Utilisation avec nos afficheurs
	Schéma final
	Quelques détails techniques

	...et de programmation
	Contraintes des évènements

	[TP] zParking
	Consigne
	Histoire
	Matériel

	Correction !
	Montage
	Schéma
	Procédure de montage

	Programme
	Les variables utiles et déclarations
	L'initialisation de la fonction setup()
	La boucle principale (loop)
	Les fonctions d'affichages
	Et le code au complet

	Conclusion

	Ajouter des sorties (numériques) à l'Arduino
	Présentation du 74HC595
	Principe
	Le composant
	Brochage
	Fonctionnement
	Montage

	Programmons pour utiliser ce composant
	Envoyer un ordre au 74HC595
	Le protocole
	Création de la fonction d'envoi
	Envoyer un char en tant que donnée binaire
	Les masques en programmation
	L'évolution du masque
	Un petit programme d'essai

	La fonction magique, ShiftOut
	Exercices : encore des chenillards !
	"J'avance et repars !"
	Consigne
	Correction

	"J'avance et reviens !"
	Consigne
	Correction

	Un dernier pour la route !
	Consigne
	Correction

	Exo bonus
	Consigne
	Correction

	Pas assez ? Augmenter encore !
	Branchement
	Exemple d'un affichage simple
	Exemple d'un chenillard

	Partie 3 : [Pratique] Communication par la liaison série
	Généralités
	Protocole de communication
	Principe de la voie série
	À quoi ça va nous servir ?

	Avant de commencer...
	Qu'est-ce qu'un protocole de communication ?
	Les types de liaison série
	Le support de liaison

	Fonctionnement de la communication série
	Les données
	Le protocole
	La norme RS232
	La vitesse de communication

	Fonctionnement de la liaison série
	Le connecteur série (ou sortie DB9)
	Qu'est-ce que c'est ?
	A quoi ça sert ?

	La gestion des erreurs
	Bit de parité

	Désolé, je suis occupé...
	Contrôle de flux logiciel
	Contrôle de flux matériel

	Mode de fonctionnement
	Mode asynchrone
	Mode synchrone

	Arduino et la communication
	Les différentes cartes Arduino
	Les autres moyens de communication

	Utiliser la liaison série avec Arduino
	Entre l'ordinateur et la carte Arduino
	Entre deux cartes Arduino
	Entre une carte Arduino et un autre micro contrôleur

	Différence entre Ordinateur et Arduino
	Les niveaux électriques
	L'ordinateur
	Arduino
	Adaptation de niveaux

	Cas d'utilisation
	Avec un ordinateur
	Avec un autre système électronique
	Mise en garde

	Envoyer/Recevoir des données
	Préparer la liaison série
	Du côté de l'ordinateur
	Du côté du programme
	L'objet Serial
	Le setup

	Envoyer des données
	Appréhender l'objet Serial
	Phrase ? Caractère ?
	print() et println()

	La fonction print() en détail
	Envoyer des nombres
	Envoyer la valeur d'une variable
	Envoyer d'autres données

	Exercice : Envoyer l'alphabet
	Objectif
	Correction

	Recevoir des données
	Réception de données
	On m'a parlé ?
	Lire les données reçues
	Le serialEvent

	Exemple de code complet
	[Exercice] Attention à la casse !
	Consigne
	Correction
	La fonction setup() et les variables utiles
	Le programme

	[TP] Baignade interdite
	Sujet du TP
	Contexte
	Objectif
	Conseil
	Réalisation
	Précision sur les chaines de caractères

	Résultat
	Correction !
	Le schéma électronique
	Les variables globales et la fonction setup()
	Les variables globales
	La fonction setup()

	La fonction principale et les autres
	Algorithme
	Fonction loop()
	Lecture des données sur la liaison série
	Allumer les drapeaux
	Faire clignoter la LED rouge
	Comparer les mots

	Code complet
	Améliorations
	Améliorations logicielles
	Améliorations matérielles

	[Annexe] Votre ordinateur et sa liaison série dans un autre langage de programmation
	En C++ avec Qt
	Installer QextSerialPort
	1ère étape : télécharger les sources
	Compiler la librairie
	Installer la librairie : Sous Linux
	Installer la librairie : Sous Windows
	Infos à rajouter dans le .pro

	Les trucs utiles
	L'interface utilisée
	Lister les liaisons séries
	Gérer une connexion

	Émettre et recevoir des données
	Émettre des données
	Recevoir des données

	En C# (.Net)
	Les trucs utiles
	L'interface et les imports
	Lister les liaisons séries
	Gérer une connexion

	Émettre et recevoir des données
	Envoyer des données
	Recevoir des données

	Partie 4 : [Pratique] Les grandeurs analogiques
	Les entrées analogiques de l'Arduino
	Un signal analogique : petits rappels
	Signal périodique
	Notre objectif

	Les convertisseurs analogiques -> numérique ou CAN
	La diversité

	Arduino dispose d'un CAN
	Principe de dichotomie

	Le CAN à approximations successives
	Le comparateur
	Le démultiplexeur
	La mémoire
	Le convertisseur numérique analogique
	Fonctionnement global
	Pas de calcul du CAN
	Les inconvénients

	Lecture analogique, on y vient...
	Lire la tension sur une broche analogique
	analogRead(pin)

	Convertir la valeur lue
	Conversion

	Une meilleure précision ?
	Solution 1 : modifier la plage d'entrée du convertisseur
	Tension de référence interne
	Tension de référence externe

	Solution 2 : présentation théorique d'une solution matérielle (nécessite des composants supplémentaires)
	Principe
	Un schéma, un exemple...

	Exemple d'utilisation
	Le potentiomètre
	Cas n°1 : le pont diviseur de tension
	Cas n°2 : la résistance variable

	Utilisation avec Arduino

	[TP] Vu-mètre à LED
	Consigne
	Vu-mètre, ça vous parle ?
	Objectif

	Correction !
	Schéma électronique
	Le code
	Variables globales et setup
	Boucle principale
	Fonction d'affichage

	Amélioration

	Et les sorties "analogiques", enfin... presque !
	Convertir des données binaires en signal analogique
	Convertisseur Numérique->Analogique
	PWM ou MLI
	Définition
	La fréquence et le rapport cyclique

	La PWM de l'Arduino
	Avant de commencer à programmer
	Les broches de la PWM
	La fréquence de la PWM
	La fonction analogWrite()
	Utilisation

	Quelques outils essentiels
	La LED RGB ou RVB
	Mixer les couleurs

	À vos claviers, prêt... programmez !
	L'objectif
	Le montage à réaliser
	Correction

	Transformation PWM -> signal analogique
	La valeur moyenne d'un signal
	Le signal carré
	Explications

	Extraire cette valeur moyenne
	Le condensateur
	Le couple RC
	Explications
	Imposons notre PWM !
	Constante de temps supérieure à la période

	Calibrer correctement la constante RC
	Le temps de stabilisation entre deux paliers
	La perte de temps en conversion
	Finalement, comment calibrer correctement la constante RC ?

	[Exercice] Une animation "YouTube"
	Énoncé
	Solution
	Le schéma
	Le code
	Les variables globales
	Le setup
	La loop
	Les étapes de l'animation
	Mise à jour des LED
	Le programme complet

	Partie 5 : [Pratique] L'affichage
	Les écrans LCD
	Un écran LCD c'est quoi ?
	Fonctionnement de l'écran

	Commande du LCD
	Le décodeur de caractères

	Quel écran choisir ?
	Les caractéristiques
	Texte ou Graphique ?
	Ce n'est pas la taille qui compte !
	La couleur, c'est important

	Communication avec l'écran
	La communication parallèle
	La communication série
	Et par liaison I²C

	Comment on s'en sert ?
	Le branchement
	Le montage à 8 broches de données
	Le montage à 4 broches de données

	Le démarrage de l'écran avec Arduino

	Votre premier texte !
	Ecrire du texte
	Afficher du texte
	Afficher une variable
	Combo ! Afficher du texte ET une variable
	La fonction solution
	Son fonctionnement
	Les marqueurs

	Exercice, faire une horloge
	Consigne
	Solution

	Se déplacer sur l'écran
	Gérer l'affichage
	Gérer le curseur
	Se déplacer sur l'écran
	Animer le curseur

	Jouer avec le texte
	Déplacer le texte à la main
	Déplacer le texte automatiquement

	Créer un caractère
	Principe de la création
	L'envoyer à l'écran et l'utiliser

	[TP] Supervision
	Consigne
	Comportement de l'écran

	Correction !
	Le montage
	Le code
	Les variables utilisées
	Le setup
	Quelques fonctions utiles
	La boucle principale
	Programme complet

